

X++ Advanced

X++ Advanced

Disclaimer:

This material is for informational purposes only. Microsoft Business
Solutions ApS disclaims all warranties and conditions with regard to
use of the material for other purposes. Microsoft Business Solutions
ApS shall not, at any time, be liable for any special, direct, indirect or
consequential damages, whether in an action of contract, negligence or
other action arising out of or in connection with the use or performance
of the material. Nothing herein should be construed as constituting any
kind of warranty.

Copyright Notice:

Copyright © 2002 Microsoft Business Solutions ApS, Denmark.

Trademark Notice:

Microsoft, Great Plains, bCentral and Microsoft Windows 2000 are
either registered trademarks or trademarks of Microsoft Corporation or
Microsoft Business Solutions Corporation in the United States and/or
other countries. Microsoft Business Solutions Corporation and Microsoft
Business Solutions ApS are wholly owned subsidiaries of Microsoft
Corporation. Navision is a registered trademark of Microsoft Business
Solutions ApS in the United States and/or other countries. The names
of actual companies and products mentioned herein may be the
trademarks of their respective owners. No part of this document may be
reproduced or transmitted in any form or by any means, whole or in part
without the prior written permission of Microsoft Business Solutions
ApS. Information in this document is subject to change without notice.
Any rights not expressly granted herein are reserved.

.

TABLE OF CONTENTS

LESSON 1.

INTRODUCTION TO X++ ADVANCED 1-1

1.1 Introduction 1-2

LESSON 2.

DEVELOPMENT TOOLS 2-1

2.1 Introduction to Development Tools 2-1

2.2 Recap of the Development Environment 2-2

2.3 Available Tools 2-4

2.4 Exercises 2-11

LESSON 3.

CLASSES 3-1

3.1 What is a Class? 3-1

3.2 Standard Methods 3-2

3.3 Object Methods 3-4

3.4 Class Methods 3-5

3.5 Main 3-6

3.6 Tables 3-7

3.7 Overview 3-8

3.8 Exercises 3-9

LESSON 4.

DATA RETURN 4-1

4.1 Using Data Return 4-2

4.2 Exercises 4-3

LESSON 5.

INHERITANCE 5-1

5.1 What Is Inheritance? 5-2

5.2 How Does Inheritance Work? 5-3

5.3 Overriding, Overloading and Inheritance 5-5

5.4 Constructor Controlled Inheritance 5-7

5.5 Job Aid 5-9

5.6 Exercises 5-10

LESSON 6.

POLYMORPHISM 6-1

6.1 Polymorphism 6-2

6.2 Exercises 6-4

LESSON 7.

MAPS 7-1

7.1 The Purpose of Maps 7-2

7.2 Structure 7-3

7.3 Calling Methods 7-4

7.4 Job Aid 7-5

7.5 Exercises 7-6

LESSON 8.

INFORMATION EXCHANGE 8-1

8.1 Using Information Exchange 8-2

8.2 The Args Class 8-3

8.3 Args Objects 8-4

8.4 Exercises 8-5

LESSON 9.

DATA IN FORMS 9-1

9.1 Data in Forms 9-2

9.2 Exercises 9-12

LESSON 10.

WINDOWS IN FORMS 10-1

10.1 Windows in Forms 10-1

10.2 Exercises 10-4

LESSON 11.

LOOKUP FORMS 11-1

11.1 Using Lookup 11-2

11.2 Lookup Forms 11-3

11.3 Exercises 11-5

LESSON 12.

LIST VIEWS 12-1

12.1 Using List Views 12-2

12.2 Exercises 12-3

LESSON 13.

TREE STRUCTURE 13-1

13.1 Using Tree Structures 13-2

13.2 Kernel Classes 13-3

13.3 Methods 13-4

13.4 Data 13-5

13.5 Exercises 13-6

LESSON 14.

TEMPORARY TABLES 14-1

14.1 Temporary Table Function 14-2

14.2 Purpose of Temporary Tables 14-3

14.3 Use 14-4

14.4 Exercises 14-5

LESSON 15.

VALIDATION TECHNIQUES 15-1

15.1 Validation Methods 15-2

15.2 Delete Actions (Review) 15-3

15.3 Table Validation Methods 15-4

15.4 Validation Sequences 15-6

15.5 Exercises 15-8

LESSON 16.

QUERIES 16-1

16.1 What is a Query? 16-2

16.2 Execution 16-3

16.3 Kernel Class Query, One Table 16-4

16.4 Join 16-5

16.5 Kernel Class Query, Several Tables 16-7

16.6 General 16-9

16.7 Job Aid 16-10

16.8 Exercises 16-11

LESSON 17.

USING SYSTEM, X AND DICT. CLASSES 17-2

17.1 Using System Classes 17-3

17.2 X-Classes 17-4

17.3 The Global Class 17-8

17.4 Using Dict Classes 17-9

17.5 Exercises 17-10

LESSON 18.

MACROS 18-1

18.1 Macros 18-2

18.2 Macros vs. Methods 18-4

18.3 Macro Types 18-5

18.4 Job Aid 18-6

18.5 Exercises 18-7

LESSON 19.

REPORTS 19-1

19.1 Reports, Args, and Element 19-2

19.2 Display Methods 19-3

19.3 Synchronization 19-4

19.4 Exercises 19-7

LESSON 20.

REPORT DESIGN 20-1

20.1 Using Report Design 20-2

20.2 Exercises 20-3

LESSON 21.

WIZARD WIZARD 21-1

21.1 What Is the Wizard Wizard? 21-2

21.2 Job Aid 21-5

21.3 Exercises 21-6

APPENDIX A.

INTRODUCTION TO X++ ADVANCED I

General Information II

Before You Start the Class: IV

Beginning the Course V

APPENDIX B.

DEVELOPMENT TOOLS I

Development Tools II

Exercise Solutions III

APPENDIX C.

CLASSES I

Instructor Notes II

Exercise Solutions III

APPENDIX D.

DATA RETURN I

Instructor Notes II

Exercise Solutions III

APPENDIX E.

INHERITANCE I

Exercise Solutions II

APPENDIX F.

POLYMORPHISM I

Exercise Solutions II

APPENDIX G.

MAPS I

Exercise Solutions II

APPENDIX H.

INFORMATION EXCHANGE I

Instructor Notes II

Exercise Solutions III

APPENDIX I.

DATA IN FORMS I

Instructor Note II

Exercise Solutions III

APPENDIX J.

WINDOWS IN FORMS I

Instructor Notes II

Exercise Solutions VII

APPENDIX K.

LOOKUP FORMS I

instructor Notes II

Exercise Solutions III

APPENDIX L.

LIST VIEWS I

Instructor Notes II

Exercise Solutions III

APPENDIX M.

TREE STRUCTURE I

instructor Notes II

Exercise Solutions III

APPENDIX N.

TEMPORARY TABLES I

Temporary Tables II

Exercise Solutions III

APPENDIX O.

VALIDATION TECHNIQUES I

Instructor Notes II

Exercise Solutions III

APPENDIX P.

QUERIES I

Instructor Notes II

Exercise Solutions III

APPENDIX Q.

USING SYSTEM, X AND DICT. CLASSES I

Instructor Notes II

Exercise Solutions III

APPENDIX R.

MACROS I

Instructor Notes II

Exercise Solutions III

APPENDIX S.

REPORTS I

Instructor Notes II

Exercise Solutions III

APPENDIX T.

REPORT DESIGN I

Instructor Notes II

Exercise Solutions III

APPENDIX U.

WIZARD WIZARD I

Instructor Notes II

Exercise Solutions III

DocID: AX-300-ILT-072-v01.00-ENUS

Lesson 1.

Introduction to X++ Advanced

Introduction to X++ Advanced 1-2

1.1 INTRODUCTION

This is the third course in Microsoft® Business Solutions–Axapta®
development suite. The course covers advanced programming in X++.

Purpose

This course expands on the knowledge introduced in the online courses:
MorphX Essentials and X++ Basics. The course provides you with an in-
depth knowledge relating to X++ Programming. You will go deeper into the
world of objects and classes and will be introduced to the concepts of
polymorphism, overloading and inheritance. This course will go through
different advanced programming features, you will learn about form
controls, validation techniques, static and dynamic methods, report
templates, how to use macros within MorphX, how to make your own
wizards and much more.

Prerequisites

Successful completion of the MorphX Essentials and the X++Basic online
courses.
It is highly recommended that you have worked with the X++ language and
MorphX for 3-6 month before this class.

General

This course is comprised of a series of lessons, each explaining a range of
specific subjects and functionalities which belong together in Axapta. All
lessons are developed in relation to common business logic, and the
subjects and functionalities are presented within the perspective of the
usual business procedures familiar to most users.

This material is a supplement to the instructor’s explanations during the
course and not tailored for individual studies without tutoring.

In the beginning of each lesson you will find a brief overview of the lesson
and a list of objectives, informing you what subjects and functionalities you
will get to know in the specific lesson. In each lesson there will be
examples; the examples make it easier for you to refer the theoretical
aspects of the course to how Axapta works outside classroom training. At
the end of each lesson you will find exercises. The exercises are designed
to give you a hands-on experience with the functionality described.

Development Tools 2-1

DocID: AX-300-ILT-037-v01.00-ENUS

Lesson 2.

Development Tools

At the end of this lesson, you are expected to be
able to:

Know the development environment

Know about the different development tools in
Axapta

Use the tools described

Development Tools 2-1

2.1 INTRODUCTION TO DEVELOPMENT TOOLS

The following lesson describes the development tools available in Microsoft
Axapta. The lesson starts with a short recap of the MorphX development
environment and then moves on to the different tools you can use to make
your repeated tasks easier to complete. We will see where the tools are
located and how they work.

The following are the tools described in this lesson:

The MorphXplorer

The debugger

The trace

The cross-reference

The table browser

The Find functionality

The Compare tool

The table definition tool

Tutorials

Development Tools 2-2

2.2 RECAP OF THE DEVELOPMENT ENVIRONMENT

The Axapta development environment is an integrated toolbox combining
different functions, such as designing, editing, data storing, compiling, and
debugging within one common environment. The development environment
within Axapta can be divided into 3 main areas, IntelliMorph (user
interfaces/presentation), MorphX Development Suite (business logic and
data dictionary) and data storing (databases).

IntelliMorph

IntelliMorph is the technology that
controls the user interface in Axapta.
The user interface is how the
functionality of the application is
presented or displayed to the user.
The same functionality can be
displayed on multiple platforms or
devices using the same application
code, for example, via the Web or via
Mobile devices.

IntelliMorph controls the layout of the
user interface and makes it hassle-
free to modify forms, reports and
menus.

MorphX Development Suite

MorphX Development Suite is
designed as a multipurpose toolbox
for developing ERP applications. MorphX Development Suite enables
system administrators and programmers to add new, and modify existing
Axapta functionality. MorphX Development Suite is the environment that
handles the business logic and the design of the data model.

Business Logic

When complex requirements call for new business logic, Axapta’s own
object-oriented language, X++, can be used. X++ uses object-oriented
programming principles such as encapsulation, inheritance, classes,
objects and methods. The language has Java-like syntax. The X++
language serves many purposes. It’s a database language, a scripting
language to create the interface to the database, a language for building

Development Tools 2-3

reports, a language for building forms for the user-interface (for both
traditional Windows clients and web applications), etc. X++ even includes a
help-system language.

Few, if any, ERP systems provide such a versatile tool. Axapta X++
radically reduces the amount of code necessary to deliver rich and versatile
functionality. Less code means less risk of error and better performance,
and the object orientation increases the ease and speed of any
development task.

Data Dictionary

The Data dictionary describes the data model within Axapta. The data
model contains information about how and where tables, fields, indexes,
and data types are used.

Database

The databases supported by Axapta store all data generated through the
business logic. Axapta is not tied to a specific database platform, but is
designed for use on top of existing standard relational databases.
Databases supported by Axapta v3.0 are Microsoft SQL Server (2000) and
Oracle (9.0.x).

Development Tools 2-4

2.3 AVAILABLE TOOLS

The Integrated development environment

Axapta has its own integrated Development Environment (IDE) which is a
programming environment consisting of a code editor, a debugger, a
compiler, and a graphical user interface (GUI) builder. The commands in
the IDE are very similar to the development environment in the Microsoft
Visual Studio.

The Visual MorphXplorer

Through the development of a system, you will often need to display the
relation between your tables and classes. Axapta has a tool that makes this
possible, the Visual MorphXplorer. To activate the Visual MorphXplorer go
to the Tools menu on the menu bar, select the development section, and
choose Visual MorphXplorer. To add new tables or classes, right-click the
client area of the window. To see the tables or classes related to an
element, right-click the element and choose the appropriate option.

You can depict the relations between tables with this information:

· The current table’s 1:n relations.

· The current table’s n:1 relations.

· The classes that use the current table.

· The maps that the current table is a part of.

In a class visualization diagram you can depict:

· What classes the current class uses.

· What classes the current class is being used by.

· The current class’ super class.

· The current class’ sub classes.

UML Notation used in Visual MorphXplorer

We use UML notation to show how tables are related to each other. The
table below describes the symbols used:

Development Tools 2-5

Symbol Meaning

Zero, one, or many records

Precisely one record

 One or zero records

 Table used in a map

 * Table appearing more than once in a diagram

The debugger

Axapta is equipped with a powerful software development tool known as
the Debugger. A debugger can be defined as a special program used to
control the execution of another program for diagnostic purposes. For
example to find errors (bugs) in X++ programs.

The debugger in Axapta 3.0 allows interactive debugging from within the
IDE (Integrated Development Environment) through the editor window.
With the help of the debugger you can:

· Step through the program one statement at a time, either "over" or
"into" functions

· Run the program up to a certain point (either to the cursor or to a
"breakpoint") and then stop

· Show the name, type, scope and value of the variables at each point
during the execution of the program in a variable window

· View the call stack

· View system status

Development Tools 2-6

· Display line numbers in your code

To activate the debugger go to the Tools menu, select Options and then
select the Development tab. Set the debug mode:

No: The debugger is never activated.

Always: The debugger is activated when X++ code is executed.

On Breakpoint: The debugger is activated only when a breakpoint in the
X++ code is encountered.

Breakpoint
Breakpoints can be set to interrupt the execution of the X++ program at
specific points. To set a breakpoint, position the cursor at the point you
wish to break the execution and then click the breakpoint toggle button
() or press F9. The line color changes to red, indicating breakpoint at
this position. Next in order is to execute the program to the breakpoint you
just added by clicking the go button () or pressing F5. This makes the
program run until it reaches the next breakpoint.

A conditional breakpoint feature has not yet been introduced in the 3.0
debugger but is expected to appear in next release.

The Debugger window is divided into four windows:

Variables
Displays the value of the variables that are within the scope of the current
call stack level. When a variable has changed between stops, it is drawn in
a different color to make it easy to spot modified variables.
It is also possible to edit the value of a variable.
Call Stack
Displays the stack of function / method calls, allowing the user to see which
function / method called the one that is currently being debugged.
A function / method on the call stack can be selected to change the call
stack level. This means that the source code for the selected function /
method is displayed in the source code window.
Watch
Displays a user-defined range of variables. It is possible to choose the

Development Tools 2-7

name of the variables that should appear in this window by entering their
names, or by dragging a variable from the Variables window or the source
code window into the Watch window.
When a variable has changed between stops, it is drawn in a different color
to make it easy to spot modified variables.
It is also possible to edit the value of a variable.
Output
Displays text that is written to this window from X++ code for debugging
purposes. When the call stack level is changed by selecting a function /
method in the Call Stack window, the Variables and Watch window are
automatically refreshed to display the variables that are within the scope of
the selected call stack level.

Trace

If you want to trace program execution you need to activate the trace. To
do this go to the Tools menu, select Options, and then select the
Development tab. On the tab you see the Trace group in which 4 options
are available:

· Database trace

· Methods trace

· Client-Server trace

· ActiveX trace

When you select one of the trace methods a window will appear as soon as
you activate one of the controls you were tracing.

Note: Be aware that if you select Methods trace you will get a lot of
information at once because Axapta shows you all the methods that will be
called, like OnMouseMove or OnMouseLeave.

Cross-reference

The Axapta cross-reference system was designed to improve your
overview of application objects. The cross-reference system answers
questions such as:

· Where is a field accessed (read/written)?

· Where is a method activated?

Development Tools 2-8

· What is the type name used in the system?

· What are the variable names used in the system?

Cross-references are based on what happens in the X++ code, on labels,
and on information in the property sheets. The last mentioned includes
information about the use of tables, fields, indexes, Extended Data Types,
and Base Enums.

Before you can use the cross-references you need to create them. To
create a cross-reference system for your application, click Update Periodic
on the Cross-reference submenu. The Cross-reference submenu is located
on the Development submenu on the Tools menu.

Note: Be aware that updating all the cross-references is very time
consuming. Depending on the hardware you have it can take from four
hours and up. It is recommended that you update a selected part of the
database.

Application objects

Use this view to see which elements are referring to the actual element.
Furthermore, use the Scan Source to search for a specific text string.

To compare applications object on different layers, right-click the element.
Choose Add-ins and then select Compare. The system shows the
differences in the two objects by marking the new elements in blue, deleted
elements in red, and unchanged elements in black.

The Table browser

The table browser facility allows you to view, edit, and enter data in any
table used as a data source for a form, a query or a report.

The table browser is available from the Add-ins menu on the Application
Object Tree shortcut menu.

Find

Sometimes while developing you might need to find a certain method or a
certain line of code. To do so Axapta implements a find function. This find
works in the same way as the Windows find. Use it to find elements in the
AOT based on one or more of the following parameters:

Development Tools 2-9

· Name

· A certain text

· A specific date

· Elements created by a certain person

· If you want to search all notes or just on methods

· The type of element

· The layer in which the element is placed

· The size

· Where the element is run (server/client)

The Filter tab is used for advanced filtering of the search result. Write X++
code in the Source field. The code is evaluated for each node that is found
and should return a Boolean that is true if the node is to be included in the
search result and false if it should not be included.

Compare

Under Add-ins there is yet another powerful tool, the compare tool. The
Compare layers function can be used as an alternative to the Create
upgrade project. The Compare layers function compares any two layers
and creates a project with the objects that are different from one layer to
another. As opposed to the Create upgrade project, duplicates are not
deleted. Consequently, the Compare layers function may also be useful as
a general tool, for example to give an overview of modifications made in a
certain layer. Properties as well as X++ source code are compared.

Development Tools 2-10

Table definition

Use the Table definitions tool to get information about a table. To do this
select the table, right-click and choose Add-ins -> Table definition. After this
you have the opportunity to set sorting and ranges.

Tutorials

Axapta includes a number of tutorials to show you the solution to some
common tasks and to demonstrate the use of common controls. The
tutorials are implemented as forms and classes. They are prefixed
"tutorial_" and can be found below the Forms and Classes node in the
Application Object Tree.

Find

Update Cross-
referenceAOD Cross-

reference

Application
Hierarchy Tree

Application
Object Tree

Used by

Visual
MorphXplorer

Code Explorer
Compare

Other

One

Used by mapsFind and
replace

Open new
window...

Development Tools 2-11

2.4 EXERCISES

Exercise 1 MorphXplorer

Show the relations between the tables and maps:

• Address

• Country

• County

• State

• ZipCode

• Currency

• AddressFormatHeading

• AddressMap

Be sure that all relations are shown

Exercise 2 Debugger

Try to debug the code created in the Create Dialog example from
the X++ Basic course, Communicating with user, Communication
tools.

static void AXPDialogWField(Args _args)

{

Development Tools 2-12

 Dialog d1;

 DialogGroup dg1;

 DialogField df1, df2;

 ;

 // To bring the window to the top

 Window 36, 12 at 10,10;

 d1 = new Dialog("Criteria");

 dg1 = d1.addGroup("Customer");

 df1 = d1.addField(TypeId(Custaccount), "Account Number");

 dg1.columns(2);

 // df2 = d1.addField(TypeId(AccountName), "Name");

 if (d1.run())

 print df1.value();

 pause;

}

Exercise 3 Debugger

Place a breakpoint at the init method of the Form VendTable

void init()
{
 super();

Development Tools 2-13

 TaxVATNumTable::enableLookupVatNum(SalesTax_VatNum);
}

Open the Vendor Table Dialog and follow the code step by step.

Exercise 4 Table browser

Use the Table browser to examine the tables from Zipcode. Try to enter
some fields or delete some.

Exercise 5 Find compare

1. Try to change a line of code, add a line of code and delete a line of code
in the ABCBase class methods then compare the new class with the
original from the sys layer.

2. Which layers are affected if you delete the ABCBase class?

Exercise 6 Table definition

Use the Table definitions to get a view of the table Zipcode

AX-300-ILT-032-v01.00-ENUS

Lesson 3.

Classes

At the end of this lesson, you are expected to be
able to:

Understand the concept of a class.

Design, create and manage classes and
methods.

Classes 3-1

3.1 WHAT IS A CLASS?

In the preceding lesson you tried creating an object with an associated
object handle of the type Dialog. Dialog is the name of the class you want
to use.

A class can be seen as a baking form or a blueprint drawing. You use it
each time you create an object or an object handle. Using a single class,
we can create an unlimited number of objects and object handles.

Class Content

As mentioned, a class is used to design objects and object handles. Thus
the class contains all the properties an object is to have in form of methods
and variables.

Class Declaration

After creation this method appears as follows:

public class Class_name

{

 //This is where you declare all variables

 //that each object is to contain

 //for instance:

 str text;

}

In the Class Declaration the name of the class is specified and variables
that are used in the entire object are declared. Moreover, you can use it to
specify inheritance, this is described in the lesson “inheritance”. It is not
possible to assign values to the variables in Class Declaration. It is best
practice to use uppercase for the first letter in a class name.

Classes 3-2

3.2 STANDARD METHODS

When a new class is created it automatically contains the following 3
standard methods

New

After creation the “New” method appears as follows:

void New()

{

}

You use it each time you create/instantiate an object. Using this method,
you may assign values to an object's variables, as in the Dialog class. If
you declared a text variable named "text" in the ClassDeclaration, you can
now use new to enter a value in this variable. You can do this as follows:

void New(str _text)

{

 text = _text;

}

_text is a local text variable that belongs to the individual method.

void indicates that the method returns no value. This topic will be explored
further later on.

Finalize

When an object is terminated, that is, no longer connected to an object
handle, the object ’dies’ and gets garbage collected.

If you want to terminate the object yourself, the method you use is called
finalize.

It is possible to terminate other objects by stating this in the finalize
method .

You can also terminate an object by setting the object handle to = Null

Classes 3-3

Example

StopWatch sw; //You create an object handle of the stopwatch type

sw = new stopWatch(); //You create an object of the stopwatch type

and link it to the object handle

sw = Null; // The object is terminated if there are no other

object handles pointing to the object

Or

sw.finalize(); // The object is terminated, even though there are

other object handles pointing to the object. If the finalize

command contains code, the code will also be executed

Classes 3-4

3.3 OBJECT METHODS

You can create your own methods that execute your own code.

void testMethod()

{

 print ”This is a test method”;

 pause;

}

The new method is embedded in each object that is created from this class.

It can be called as follows:

objectHandleName.testMethod();

If an object method calls another object method on the same object, the
objectHandleName is replaced with this (a pointer pointing at the object
itself). Object methods are also referred to as dynamic methods.

Classes 3-5

3.4 CLASS METHODS

In the same way an object has a set of methods, it is also possible to
create methods belonging to the class. You can do this using the keyword
static.

If you were to write the method above as a class method, it would look like
this:

static void test_method()

{

 print ”this is a test method”;

 pause;

}

and could be opened as follows:

Classname::test_method();

Class methods are also referred to as static methods, and unlike dynamic
methods, you do not need to instantiate an object before using a static
method. Notice that it is not possible to use member variables in a static
method.

Static methods are widely used in Axapta, since we often just want to work
with data stored in tables and therefore do not need to instantiate member
attributes.

Classes 3-6

3.5 MAIN

As in jobs, which is what you have been using most of the time, you have
the option of executing a certain class method directly from a menu option.
The method is called Main() and may be written as follows:

Static void Main(Args _args)

{

}

The Method should do nothing else than create an instance of the object
itself and then call the necessary member methods.

Using Args, you are able to transfer data to the method, if needed. Args
will be covered in greater detail later.

You can also execute this method by highlighting the class in the AOT and
selecting Open from the right-click menu or the tool bar.

Classes 3-7

3.6 TABLES

A table can also be considered as an independent class when seen from a
programming point of view.

You can address fields and methods on tables. Methods can be called from
other objects or from the same table.

To be able to enter, update and delete records in tables you must create a
table buffer.

Tables differ from classes in the following manner:

Room for a table buffer is automatically assigned (for classes, you use
new).

A table cannot be inherited from other tables.

Table fields are public; they may be referred to from everywhere.

Table fields can be referred to directly, for example in a report.

(Variables in methods can only be referred to by return of values).

static void AXPSelectFromTable(Args _args)

{

 // create buffer

 Custtable ct;

 ;

 // fill data

 select ct;

 print ct.Name;

 pause;

}

Inheritance from other tables is not possible, but all tables are compatible
with the Common table and its fields.

Classes 3-8

3.7 OVERVIEW

A class is not an object. Think of a class as a blueprint that defines how an
object will behave when it is created from the specification declared by the
class. Concrete objects are obtained by instantiating a previously defined
class. You can instantiate many objects from one class definition, just as
you can construct many houses all the same from an architect's drawing.

Classes are fundamental when working with object oriented programming,
because they can be reused when an object needs to have similar behavior
as a formerly instantiated object.

Classes 3-9

3.8 EXERCISES

Exercise 7 Creating a class

Create a new class and call it TestClass1.

Exercise 8 Creating an object

· Edit TestClass1 to have a text variable embedded in all objects
created from this class. Declare the variable in the ClassDeclaration()
method.

· New() serves to enter a value in the variable each time an object is
created. If no value is specified, New() must set the variable content to
’Empty’.

· Create an object method called Outvar() to output the variable content
to the screen.

· Create a job, and output a text from TextClass1.

Exercise 9 Modifying Outvar()

· Edit Outvar() so that it allows you to enter a new value in the text by
giving arguments to the method Outvar().

· Use the job from the previous exercise to test whether Outvar() work
as intended.

Exercise 10 Creating the class method Main()

Classes 3-10

· Create the class method Main(), and enter code in it to have it output a
line to the screen, for example ’just testing’.

· Test it by activating Open on the tool bar or in the menu.

Exercise 11 Create a job that execute Main()

Now create a job that execute Main() in TestClass1

Exercise 12 Calculators (Optional)

· Create a class that functions as a primitive calculator.

· The class is to contain a new method that may receive the two
numbers the calculator will be using for its calculations.

· Each mathematical operation (+,-,* and /) must have an object method
that calculates a value based on the two numbers received in the new
method.

· Output the result of the calculation from your "calculator."

· Create a job that can test the calculator, too.

Doc ID: AX-300-ILT-068-v01.00-ENUS

Lesson 4.

Data Return

At the end of this lesson, you are expected to be
able to:

Use methods that returns data.

Write methods that returns data.

Data Return 4-2

4.1 USING DATA RETURN

So far, you have been working with methods that receive data when you
open them. But you have yet to use methods that return data.

Up to now, all methods you have written have specified void. Void indicates
that there is no return value. As an example of a method that returns data,
you could use the class method GetTickCount() from the WinAPI class.
GetTickCount() returns an integer that is the number of thousands of
seconds that the system has been running.

If you want to create a method yourself that can return data, you must
remember two things. Instead of using void, you must specify which data
type you want returned. Here the possibilities are endless. All forms of data
types may be returned, as well as database buffers and objects. You also
have the option of specifying any type. This means that the method can
return several different data types.

In addition to this specification, you must also enter a command called
return and specify what you want returned. Return must always be placed
at the end, as this command concludes the method.

Example:

You can create a method that receives integers and returns the value
multiplied by two.

 int Double(int number)

 {

 return number*2; //No lines
following return are executed.

 }

Data Return 4-3

4.2 EXERCISES

Exercise 13 Calculator

Create a class that functions as a primitive calculator.

The class is to contain a new method that may receive the two numbers the
calculator will be using for its calculations.

Each mathematical operation (+,-,* and /) is to have an object method that
calculates a value based on the two numbers received in the new method.

Get the results of the calculation returned as data without having them
printed out by the ’calculator’.

Then create a job that can test the calculator and output the mathematical
results.

Exercise 14 Using WinAPI::GetTickCount

Create a new job that uses and prints out the number of thousands of
seconds the system has been running.

Exercise 15 Return a database buffer

Create a new class or use the class from your last lesson. Create a new
class method. This method must be able to receive a customer account
number and return the entire record for the relevant customer in a database
buffer.

Then create a job that opens the method with a given account number and
finally prints out the customer's name. If you experience problems, you may
want to review the lesson covering select.

Data Return 4-4

Exercise 16 Create a stopwatch

The purpose of this exercise is to demonstrate some of the advantages of
object-oriented programming. Let's say you want to develop a stopwatch.
To make it work, you need an interface, a form containing buttons and
displays, and the actual clockworks, a class. The point is that you may
develop these two elements separately without having to know exactly how
the elements are constructed internally. Knowing the information to be
transferred between the elements is sufficient.

Your Part of the Exercise:

Your part of the exercise is to develop the actual "clockworks." The
“outlook” of the stopwatch will be a form with buttons and displays. The
form is to use a class, the clockworks, from which it may create an object.
The class should have four object methods corresponding to the ’start’,
’stop’, ’reset’ and ’display time’ buttons on the form. In order to make this
work, however, it is important that we agree on the following:

· The name of the class

· The name of the methods

· What parameters the methods are to receive and return.

This data can be completed in the template below (this template can
actually be used every time you create a class) :

Class Name:

Method Name Parameters Return Value

The remaining aspects of coding the class and methods are up to you, as
long as they meet the functional requirements below:

Data Return 4-5

Stopwatch: Functional Requirement

· It must be possible to retrieve the time elapsed since the stopwatch
was started.

· It must be possible to stop the stopwatch without resetting it, so that it
may resume counting as soon as ’start’ is pressed again.

· It must be possible to reset the intervals when you press a button
called: ’reset’.

· It should be possible to resume counting when ’reset’ is pressed
while the stopwatch is running.

· The stopwatch is to measure time in thousandths of seconds.

Exercise 17 Modifying the stopwatch start method (optional)

Modify the start method so that, if activated when the stopwatch is running,
the stop method is automatically activated.

DocID: AX-300-ILT-033-v01.00-ENUS

Lesson 5.

Inheritance

At the end of this lesson, you are expected to be
able to:

Understand the principles of inheritance.

Use inheritance between classes.

Understand and manage overriding and
overloading of methods.

Inheritance 5-2

5.1 WHAT IS INHERITANCE?

In an earlier course (MorphX Essentials online course), you were
introduced to extended data types. You saw how one or more extended
data types could inherit properties from an overlying extended data type.

The same principle applies to classes.

Let's use the same TV set example. You may have a black and white TV or
a color TV. Both types are TV set varieties and therefore have many
common characteristics. If you want to compare with the class example,
you could say that you are dealing with a super class called TV. There are
two underlying classes named black and white TV and color TV. Both these
classes inherit all their properties from the class called TV.

You can therefore set up an entire inheritance hierarchy for a system of
classes.

Inheritance 5-3

5.2 HOW DOES INHERITANCE WORK?

Let's use an example. We have two classes. Class1 and Class2. Class2
inherits Class1.

This means that the class declaration method contains the extends
command and appears as follows:

Example

public class Class2 extends Class1

{}

This is visualized in UML as:

The following now applies:

Objects created from Class2 have the same methods and variables as
Class1.

Objects created from Class2 may have variables and methods that do not
exist in Class1.

Objects created from Class2 may have methods from Class1 that are
overridden, that is, overwritten or altered, in Class2.

If you compare an object to a TV set once more, you could say that a TV
stemming from an inherited class will have the same methods -- buttons on
the remote control -- as a TV stemming from the class from which the
properties are being inherited.

The TV from the inherited class may even have more methods. Finally,
some of the inherited methods may have been altered.

Inheritance 5-4

Example

Please note that a class may only inherit from one other class. In other
words, there is no multiple inheritance in X++.

For example, Class1 contains two methods as illustratet in the figure.

Class2 overrides the method method1 from Class1. If the system refers to
the method method2 in Class2, the method is automatically "retrieved"
from the overlying class Class1.

Class2 may contain methods not present in Class1. In this case, method3.
.

Inheritance 5-5

5.3 OVERRIDING, OVERLOADING AND INHERITANCE

As mentioned earlier it is possible to inherit from one object to another. This
is done in the same way as in Java, by using the keyword extends. The
inheritance is stated in the classDeclaration, similar to the following:

Class Class2 extends Class1

Where class1 and class2 are the two classes, in this case class2 inherits
from class1, and class is the keyword denoting that this is a class. In
Axapta it is only possible to do a single inheritance.

Private, Public and Protected

The following keywords are used to define the degree of visibility:

public: Methods declared as public are accessible anywhere the class is
accessible, and they are inherited by subclasses.

protected: Methods declared as protected are accessible to and
inherited by subclasses.

private: Methods declared as private are accessible only in the class
itself and cannot be overridden by subclasses

You can also specify a method as abstract, which means that the code for
the method is only defined in the child class, and you cannot use it in a
parent object. These keywords are defined and implemented in Axapta.

Overriding and overloading

If you inherit from a class, there are many cases where you might want to
override or overload a certain method.

Inheritance 5-6

Example

The model describes how three classes inherit from one class. The Vehicle
class has the public method numWheels (defining the number of wheels on
the vehicle), which is inherited by

1. The MotorBike class

2. The Car class

3. The Truck class.

These three classes also have other methods, defining what they can do.

The method they inherit from the Vehicle class can be either overridden or
overloaded. In the first and second case the method is overridden, which
means that only the functionality is changed. In the third case the method is
overloaded, which means that both functionality and parameters are
changed. The rear axles of a truck usually have four wheels, two on each
side, which is different from the front axles of the truck that have 2 wheels
per axe. Both a motorbike and a car have the same number of wheels in
the back as in on the front. Because the front and back axles of a truck are
different the method inherited from the vehicle class must be overloaded.
This is not necessary when the motorbike and the car inherit, as it is only
the number of wheels pr. axle that differs.

It is only possible to add new parameters to existing ones. It is not possible
to change existing parameters. Always remember to set a default value on
the new parameters.

+numWheels(in ax)
-Wheels

Vehicle

+sideWagon()
+numWheels(in ax)

MotorBike

+numDoor()
+numWheels(in ax)

Car

+numWheels(in f,b = 2)

Truck

Inheritance 5-7

5.4 CONSTRUCTOR CONTROLLED INHERITANCE

Inheritance is a very powerful tool in object-oriented programming since it
allows you to use already existing and tested classes and prevents you
from writing redundant code. Child classes can inherit methods from the
parent and use them as they are, override them or even overload them. To
use a child class, you create a handle for it and instantiate the object. But
this is not always sufficient. Sometimes you do not know exactly which
child class to work with.

Example

A vehicle company has just built a very advanced vehicle creation factory.
They can produce motorbikes, cars, and trucks. Now they need a program,
which can be used to control which type of vehicle is being produced.

The solution to this problem lies in the vehicle class structure created
earlier. In order to use this class structure the following code must be
placed in a construct method on the parent class:

static Vehicle construct(VehicleType _type)

{

 switch (_type)

{

 case vehicleType::Truck : return new Truck();

case vehicleType::Car : return new Car();

 case vehicleType::MotorBike :return new MotorBike()

default : error(‘Wrong type’);

}

return 0;

}

If the factory should create a truck, simply use the following code:

Inheritance 5-8

 Vehicle newVehicle;

 ...

 ...

 newVehicle = Vehicle::construct(VehicleType::Truck);

 …Do something with the truck …

In order to determine which type of vehicle is created the method
toString is used. This method returns the type as a string. For example
does the number of axles which has to be placed on the vehicle depend on
the type; two axles for motorbike, and car, and three axles for a truck:

If (newVehicle.toString() == “Truck”)

Create 3 axles;

Else Create 2 axles.

Please note that instead of hard coding the number 3, you should instead
write and use a method, getNrOfAxles(), in the Truck class that returns the
number of axles. This is the correct object oriented way of coding.

Constructor controlled inheritance is widely used in Axapta, all the modules
is based on this technology. The number sequence class structure is a
good example of this. The parent class NumberSeqReference contains a
construct method, which is called every time Axapta needs to create a new
number sequence.

Inheritance 5-9

5.5 JOB AID

Function Procedure Keystroke

Create a class that
inherits from another

Create a new class
and let it inherit from
the class ABCBase

Work routine

New Class

Create a new class
(Class1) in the AOT,
Classes node

CTRL+N

Work routine

Edit the code for class1
so it inherits from the
ABCBase class

Edit the new class

 insert the code:

public class Class1
extends ABCBase;

{

}

save and compile it.

Right-click the Class

F8

Inheritance 5-10

5.6 EXERCISES

Exercise 18 Create two classes and let one inherit from the other.

The class airplane should inherit from the vehicle class. First create the
classes. All interaction with the Airplane class will be at Vehicle class level.

Class Vehicle should contain:

an abstract method "aditionalInformation".

a toString method, so we can check the name of the class.

Class airplane:

• Use the construct method from the Vehicle class

Use this job to test your classes

static void inheritance(Args _args)

{

 Vehicle airplane;

 Vehicle bike;

 Vehicle car;

 ;

 airplane = Vehicle::constructor(VehicleType::Airplane);

 bike = Vehicle::constructor(VehicleType::Bike);

 car = Vehicle::constructor(VehicleType::Car);

 print airplane.toString();

 print bike.toString();

 print car.toString();

 print airplane.aditionalInformation();

 print bike.aditionalInformation();

 print car.aditionalInformation();

 pause;

}.

Inheritance 5-11

Exercise 19 Inherit from the Stopwatch

Use the stopwatch example from the Data Return lesson and create a new
class that inherits from your “StopWatch” class. Override the method that
returns the time elapsed, so it returns the time elapsed divided by 1000 (the
time in seconds).

Polymorphism 6-1

AX-300-ILT-034-v01.00-ENUS

Lesson 6.

Polymorphism

At the end of this lesson, you are expected to be
able to:

Understand the principles of polymorphism.

Apply polymorphism.

Polymorphism 6-2

6.1 POLYMORPHISM

When a method has several forms

The work polymorphism is derived from Greek and means “many forms”.

When you work with inherited classes and a method exists in several
versions, you have the option of using polymorphic.

Example:

Like in the previous lesson, you have two classes: Class1 and Class2,
where Class2 inherits from Class1.

Now you will create an object from Class2, but using an object handle from
Class1.

 Class1 K = new Class2();

What are the results of this?

Once more, we'll use a TV set with a remote control as an example.

In this situation, you have two types of TVs. An O1 type that is inherited in
O2. This type has the same methods as in O1, but some of them have
been altered. Moreover, O2 has some additional methods. The current
situation is that you have a TV of the O2 type and a remote control of the
O1 type. You can therefore only activate the methods that exist in O1, the
buttons on the remote control. But since the TV set to which the remote
control is linked, is of the O2 type, these are the methods that will be
executed.

Polymorphism 6-3

For example, Class1 contains four methods.

Class2 overrides two methods from Class1. If the system refers to one of
the methods that are not overridden in Class2, the method is automatically
"retrieved" from the overlying class.

Class2 may contain methods not present in Class1, in this case, method5.

Class1 C1; // Defines handle of Class 1 type

C1 = new Class2(); //The handle points to an object of the

inherited class

C1.method1(); // the method is opened from class 2,

exists in class 1

C1.method2(); // the method is opened from class 1,

exists in class 1

C1.method3(); // the method is opened from class 2,

exists in class 1

C1.method4(); // the method is opened from class 1,

exists in class 1

C1.method5(); // the method cannot be opened, since it

does not exist in Class 1

// in other words, your handle only "knows"

methods declared in class 1

Polymorphism 6-4

6.2 EXERCISES

Exercise 20 Using polymorphism

· Edit the form that executed your stopwatch (lesson Data return) so that
it creates an object of your ’second stopwatch’ but uses an object handle
from your original stopwatch.

Exercise 21 Using polymorphism (Optional)

1 Create a new class using a class method that can test stopwatch
objects. It should work in the following way:

The method receives an object handle created from your original stopwatch
class. This object handle is linked to an object created from your original
class or the class that inherited this class (The class that displays the time
in seconds).

The method will then do the following:

· Activate the stopwatch object start method.

· Pause until the user prompts the system to continue.

· Activate the stopwatch object stop method.

· Activate the stopwatch object printout time method.

2 Once the class with the new method is written, a new job is created
where the object and an object handle is created and entered in the
method, which is then executed.

This exercise serves to illustrate the concept of polymorphism, as your test
method works well whether it receives a stopwatch object handle linked to
an object of both of the stopwatch types.

Maps 7-1

DocID: AX-300-ILT-035-v01.00-ENUS

Lesson 7.

Maps

At the end of this lesson, you are expected to be
able to:

Understand the purpose of the maps feature.

Create and use maps.

Maps 7-2

7.1 THE PURPOSE OF MAPS

As previously seen, a table cannot inherit properties from another table
(with the exception of Common). So the question is: If two tables are
almost identical, is it necessary to create methods that are virtually the
same for each of these tables?

No, and this is where maps enter the picture. You could say that maps
compensate for the fact that tables cannot inherit properties from one
another. Maps is located in the AOT under Data Dictionary. Even though a
map resembles a table at first glance, the critical difference is that, it does
not contain data but functions rather as a library of methods intended to be
shared by several tables.

Maps 7-3

7.2 STRUCTURE

The following is an illustration of a map.

A map contains fields to which the methods created later in the relevant
map, refer to. The idea is that each field is linked to fields in regular tables.
This linkage is created through Mappings. First you create one mapping
per table, which will later use methods from the relevant map. Then, on
each individual mapping, you make sure each map field is linked with each
table field.

Maps 7-4

7.3 CALLING METHODS

If you want to activate a method located on a map, you might think you
should be able to do this by simply specifying the table name followed by
the name of the desired method. However, it is not as simple as that. A
table may be linked to several different maps, which is also why it is
necessary to specify the name of the map where the method is located.

You call the method as follows:

 Table.Map::Method();

Please note that even though this example uses ’::’before the name of the
method, it is actually dynamic.

Maps 7-5

7.4 JOB AID

Function Procedure Keystroke

New map From AOT, Data
dictionary, Maps

CTRL+N

Naming the map Name the map
accordingly to the
tables and functionality
you want to relate to
(look at the existing
map names for
inspiration)

Create fields

Create the fields you
need for this map.

Create mappings

Create the mappings.
One for each table

Create methods Write the methods
which you will need for
all tables.

Create this pointers in
the table method

Make a reference in
the table method to the
map method.

Maps 7-6

7.5 EXERCISES

Exercise 22 Creating a map

· Create two new tables with two text fields each, both with different
names.

· Then create a Map, also with two text fields.

· Finally, in Mappings, make sure the two text fields are linked to fields in
each of the two tables.

Exercise 23 Using a map

· Create a method on the map you created in the previous exercise,
where you can copy the contents of the first field to the second field.

· Create a form that shows data for one of the two tables and which has
a button activating the previous method in the current record.

Information Exchange 8-1

AX-300-ILT-049-v01.00-ENUS

Lesson 8.

Information Exchange

At the end of this lesson, you are expected to be
able to:

Understand how application elements can
activate each other

Understand how information can be exchanged
between application elements

Be familiar with methods from the Args class.

Information Exchange 8-2

8.1 USING INFORMATION EXCHANGE

So far you have seen how data is synchronized when one form is activated
from another form. This happens automatically, but the point is naturally
that the opened form must know which record was active in the form it was
opened from.

Let's start nice and slow by finding out how to activate a form without using
a menu item.

You can do this as follows:

 Args args = new Args(formStr(FormName));

 FormRun formRun= new FormRun(Args);

 ;

 formRun.init();

 formRun.run();

 formRun.wait();

If there is a form named as specified above under FormName, it will now
be executed. However, no data will be transferred to the form, since you
have not instructed the system to do so.

If you wanted to transfer data, the example above would have looked like
this:

 Args args = new Args();

 Form form = new Form(formStr(FormName));

 FormRun formRun;

 ;

 args.object(form);

 args.caller(this);

 args.name(formStr(FormName));

 formRun = ClassFactory.formRunClass(args);

 formRun.init();

 formRun.run();

 formRun.wait();

Information Exchange 8-3

8.2 THE ARGS CLASS

The secret behind information exchange lies hidden in objects created from
the Args class. Through Menu Items, you can add parameters in the form
of text or an Enum of a given value.

This data is entered in an object created from the Args class and may be
"fished out" using methods for the Args object, parm(), parmEnumType(),
and parmEnum(). In the code example above, the methods could also
have been used to enter data in the Args object.

All methods in the Args class can be viewed in System Documentation,
Classes, Args but some of them, such as dataSet() and record(), should
be mentioned here. This is because if you open an application element
from a form using a menu item, you can then use these methods on the
opened element to find out which record was active in the form from which
the element was opened, as well as which table the relevant record stems
from. You can also use the record() method to enter a record in the Args
object.

Finally, you have the caller() method. It is used to specify the object from
which elements were opened.

Information Exchange 8-4

8.3 ARGS OBJECTS

The methods specified in the above section are accessible on objects
created from the Args class. The question is therefore how to get hold of
the Args objects. You already know that the form or report receives an
object of this type.

 element.args()

The code above indicates how to retrieve the Args object. You can
therefore, as an extension of the line above, specify a method you want
executed on the Args object, or you can link it to an object handle and
apply the methods from there.

Information Exchange 8-5

8.4 EXERCISES

Exercise 24 Opening a form

· Create a new form displaying CustTable data.

· Then create a menu item used to activate the form. On the properties
of the created menu item, you can now specify a parameter and an
Enum.

· Then open the form's init or run method and add code that allows you
to retrieve parameter and Enum.

Exercise 25 Opening a form from another form

· Now create another form also displaying CustTable data (make a copy
of the first form, and delete the init/run method).

· Enter the menu item you created in the previous exercise in this form.

· Then get the form from the previous exercise, and edit its init- or run
method so that return values are printed from the dataset() and
record() methods on the form's Args object.

Exercise 26 Opening a form from a job

· Create a job that activates the form from the first exercise.

· Write the code so that the content of the Args object corresponds to
that of the second exercise.

Information Exchange 8-6

Exercise 27 Closing Form1 from Form2 (Optional Exercise)

In the second exercise you activated a form from another form.

· Create a button on the activated form that can be used to close the
form it was called from.

Data in Forms 9-1

AX-300-ILT-050-v01.00-ENUS

Lesson 9.

Data in Forms

At the end of this lesson, you are expected to be
able to:

 Understand how you select and enter data in
 forms.

Understand how queries function on forms

Call a method on a form automatically

Data in Forms 9-2

9.1 DATA IN FORMS

At this point, you have probably developed a large number of forms for
displaying data from various tables. Some of these forms displayed all
records in a table, while other forms only included an extract of the table
content (synchronized forms). You probably did not worry much about how
the data was selected as the system took care of this automatically. In this
lesson we explore how to manipulate the handling and display of data in
forms.

Queries on forms

The data contents of a table can be influenced using a query linked to the
relevant form. Forms that are linked to one or more tables also contain
queries. The queries may not be as visible as in a report when you are
looking at the tree structure of a form, but that it is actually the same.

If you expand the tree structure of a form in the AOT, you will notice that
you can’t see the query but only data source.

Using a query on a form

Manipulating queries in a form is neither more nor less advanced than
manipulating reports. For example, if you only want to load records where a
given field has a certain value, you can generally accomplish this in the
same way as in a report.

In the form's data source init method, you could create an object of the
QueryBuildRange type and then, using the value() method, specify the

Data in Forms 9-3

field value for which you want ranges.

For example, if you build a simple form based on the CustTable you can
override the Init method on the data source as follows.

The code in the Init method would be as follows.

public void init()
{
 QueryBuildRange queryBuildRange;

 ;
 super();
 queryBuildRange =
this.query().dataSourceNo(1).addRange(fieldnum(CustTabl
e,AccountNum));
 queryBuildRange.value("4000");

}

Here you use the addRange() method on the data source for the form to
add a new range on the AccountNum field. A value is assigned to this
range with the value() method of the queryBuildRange. Remember to
make a call to super() to make sure the query is initialized correctly.

When the form is run the result is a filtered view of the CustTable for the
specific record.

Data loading

The executeQuery() method on a forms data source is used to execute the
query generated from the Init() method on the data source. This can be

Data in Forms 9-4

used at times to refresh the data on a form. For example if you want to
refresh the data in a form when editing data, you can accomplish this by
running the form's query again.

If you add a button to a form, you can add some code to change the display
of data. The code below is executed when the button is clicked.

void clicked()

{
 Query currentQuery;
 QueryBuildRange queryBuildRange;

 ;

 super();

 currentQuery = CustTable_ds.query();
 queryBuildRange =
currentQuery.dataSourceNo(1).range(1);
 queryBuildRange.value("4000..4004");
 CustTable_ds.executeQuery();

}

In this example you use a method located on the form's data source. To
access the form’s data source you can use the name of the data source
extended with _ds. Like this :

 Datasourcename_ds.executeQuery();

You could also use the _q suffix on the data source name to get to the
query of the data source. For example adding another button to the sample
form you can change the code to look like this :

void clicked()

{
 super();

 CustTable_q.dataSourceNo(1).range(1).value("4000");
 CustTable_ds.executeQuery();
}

If you wanted to move the positioning of the active record in the displayed
set of data you can use the First(), Last(), Next() and Prev() methods. For
example to move to the last record:

Datasourcename_ds.last();

Data in Forms 9-5

You can look at additional methods like filter() and findRecord() to use by
overriding or calling from the data source to alter the display of data on a
form.

Manipulating data in a form

Once you have opened a form or move around the record set in a form you
may want to manipulate the data in a form. This can also be achieved with
overriding or calling the methods on a form’s data sources.

For example you could create a new record in the underlying table with the
create() method. Calling this method has the same effect as the user
pressing the CTRL+N keys on the keyboard.

Datasourcename_ds.create();

This method takes a boolean parameter to determine if the record is
inserted before, false, or after, true.

After a new record is created you can initialize default values by calling the
initValue() method. Calling this method actives the table initValue()
method. If this method is overridden on the data source calling super() will
activate the method on the table. MorphX calls the initValue() method on a
table automatically so there is no need to call this explicitly.

You may want to delete a record from a table via the form. A user can do
this with the ALT+F9 keys. It can also be achieved by calling the delete()
method on the data source.

Datasourcename_ds.delete();

If this method is overridden the use of super() activates the
validateDelete() method on the data source which activates the same
method on the table. The validateDelete() method on the table and the
data source should return true if the delete can go ahead and false if it
shouldn’t.

Assigning values to fields in a record is a simple matter of using the data
source. For example assigning a value to the CustGroup field for a form
that uses the CustTable would be achieved by

CustTable.CustGroup = “10”;

Data in Forms 9-6

Method description

In the Developer's Guide you will find descriptions of all methods on the
form's data source, as well as indication of the sequence in which they are
executed. For clarity of this material they are reproduced here:

Method Name Is Executed Comments

Active the user scrolls to
make a new record
the current one.

The super() call makes a new
record the current one.

Create the user creates a
new record in the
data source, for
example by using
the default shortcut
key for insertion
(CTRL+N).

The super() call creates a new
record before the current one on
the screen.

To have the new record created
after the current record, set the
methods after parameter to true.

defaultMark the user clicks mark
area (top left corner)
in a grid control.

When records are loaded and
presented in a grid, they are
marked with a default mark value
of one (1). The fact that they are
marked is used for delete and for
copy.

Delete the user deletes a
record in the data
source.

The super()activates
validateDelete and (if it returns
true) manages the database
delete action.

deleteMarked the user deletes
(ALT+F9) one or
more marked
(selected) records in
the data source.

If no records have been marked
(selected), delete is executed.

Data in Forms 9-7

dislayOption before a record is
displayed.

displayOption is executed once
for each record, before the record
is displayed and after it has been
loaded.

The method is used to set text
color and background color for
individual records.

exeuteQuery the form is opened
for data display.

The super() call executes the
query generated by the init
method and displays records.

Filter the user activates
the Filter command
on the form shortcut
menu.

Write code lines on the filter
method if you want to add
information to the standard filer
functionality.

findValue the user clicks the
Find Value
command in the
shortcut menu on a
form control.

The super() call finds the
specified value, and makes the
record with that value the current
one using findRecord.

First focus moves to the
first record in the
data source.

The super() call moves to the first
record in the data source.

Init The form is opened. On the basis of the properties on
the data source, the super() call
creates the query to load data to
be displayed in the form.

initValue a new record is
created. The
purpose is to fill in
initial values in the
record.

The super() call activates the
table’s initValue method and the
values initial values are filled in.

In this method you would typically
assign values to a new record.
The system does not consider
the record to be modified until the
user has entered values in one or
more fields.

Data in Forms 9-8

Last focus moves to the
last record in the
data source.

The super() call moves to the last
record in the data source.

Leave focus moves to a
new record, or to a
new data source.

leave is executed regardless of
changes to the record. The
super() call does not do anything
and the method is merely used
as a notification.

leaveRecord focus moves to a
new record.

linkActive the user scrolls to a
new record in a form
with its data source
linked to another
data source.

The super() call activates
executeQuery on the data
source that the form is linked to.

This method is only used when a
link between two data sources
has been established (by setting
the LinkType property to Yes on
the data source).

Next focus moves to the
next record in the
data source.

The super() call moves to the
next record in the data source.

Prev focus moves to the
previous record in
the data source.

The super() call moves to the
previous record in the data
source.

Print the user activates
the Print command
in the File menu.

The super() call prints the current
record using the system’s auto
report facilities (the
SysTableReport report, located in
the Reports node).

Prompt the user activates
the Filter Records
command (from the
Command menu or
by activating the
CTRL+F3).

The super() call activates the
standard form used to limit the
query range (the sysQueryForm
form).

Data in Forms 9-9

Refresh The super() call updates the
screen (all fields in the data
source).

refresh calls refreshEx.

The contents of the active record
are re-drawn without load from
disk. You can for example use
refresh if you need to update in
the course of a major operation.

refreshEx a form is activated
where records have
been selected.

refreshEx is an extended version
of the refresh method. It has one
parameter and refreshes a single
line.

removeFilter the user clicks the
Cancel Filter
command in the
shortcut menu on a
form control.

The super() call resets the query,
that is, removes all modifications
to the original query generated by
the form data source init method.

reRead Not activated by the
system

The super() call re-reads the
current record from the database.

Research Not activated by the
system.

The super() call refreshes the
database search defined by the
query automatically generated in
the init method.

Corresponds to re-activating
executeQuery with the exception
that research preserves the
query’s filter, sorting and so on.

research vs. executeQuery

If you want to refresh the form
with records that were inserted in
a method or job that was called,
then you should use research.

If you want to change the query
to show other records, perhaps

Data in Forms 9-10

based on a modified filter, then
you should use executeQuery.

validateDelete A record is to be
deleted.

The super() call invokes the
validateDelete method on the
table.

Use this method to add your own
data validation checks whenever
necessary.

validateWrite A new or updated
record is to be
written

The super() call invokes the
validateWrite method on the
table.

Use this method to add your own
data validation checks whenever
necessary.

Write the user inserts a
new record or
updates an existing
one.

The super() activates
validateWrite and (if it returns
true) manages the database write
action.

Data in Forms 9-11

Validation sequence of data

The validation of data entered on a form happens in a defined sequence
once the user has modified data in a form control. (Refer to Validation
Techniques Lesson).

Automatic features

At times, you may want a form to be automatically updated at a certain time
interval, for example if the data displayed in the form frequently changes or
you would like to execute a task from a form at certain time intervals.

All forms inherit properties from the Object kernel class. The SetTimeOut()
method is located in this class. This method is used with three parameters,
the first two of which are mandatory. The first one indicates the ID of the
method to be activated. The second indicates the number of thousandths of
seconds for the method, specified in the first parameter that is executed.

The last parameter is a boolean that is used to indicate how the time is
measured. If the parameter is set to true then the idle time is measured
from when the keyboard or mouse was used. Use false to indicate that the
time should be measure since the last time SetTimeOut() was executed.

You can execute this method from a form as follows:

 element.SetTimeOut(identifierstr(Methodname),3000,false);

For further description of SetTimeOut() and other methods in the Object
class, see System Documentation/Classes.

Data in Forms 9-12

9.2 EXERCISES

Exercise 28 Finding a good example

Use the Find tool to find a form using an object of the QueryBuildRange
type.

Exercise 29 Ranges on CustGroup

Create a form displaying data from CustTable in a grid a range set on the
CustGroup field so that only customers in group 40 are displayed.

Exercise 30 Ranges on CustGroup (Continued)

· Create a text field in the form from the previous exercise. You will be
using the field to specify a certain customer group so that only records
containing the same customer group are displayed in the form.

· To that end, create a button that updates the content of the form when
activated.

Data in Forms 9-13

Exercise 31 Automatic updating

· Finally, readjust the form so that updating takes place automatically
every second.

· To check whether the updating actually occurs as often as expected,
you must also insert a data field that displays the number of updates
performed since the form was opened.

Windows in Forms 10-1

AX-300-ILT-051-v01.00-ENUS

Lesson 10.

Windows in Forms

At the end of this lesson, you are expected to be
able to:

Use the Window form controls

Use methods on the Window Form Controls

Windows in Forms 10-1

10.1 WINDOWS IN FORMS

In the preceding section we looked at form controls. Window is one of
them. An object of this type derives from the FormWindowControl kernel
class. It has several purposes, but in this lesson you will focus on using it to
display images.

Properties

If the image you want to display is saved in a file, the easiest way to load
the image would be to use the property called ImageName. Here you can
specify the path and name of the file you want to load.

Alternatively, you can use DataSource and DataField in properties. If so,
you enter data source name and field name containing path and file name
there.

Finally, in properties, you also have the option of specifying a method name
in DataMethod, which returns the path and file name. A new method can
be created on a table, data source or from the form objects to display. An
example or a method would look like this on a table if the table has a field
called FileName.

display Filename displayImage()

{

 return this.Filename;

}

Methods

Another way to load an image would be to use the ImageName() and
UpdateWindow() methods, both of which are located on the object.

Example

If you create a new form with a window control and set the name property
to ImageWindow and also set the AutoDeclaration property to Yes then
you can load an image on the form with the following code, for example,
from the clicked method of a button.

void clicked()

{

Windows in Forms 10-2

 super();

 ImageWindow.imageName("C:\\temp\\Images\\img10-

paraglider.jpg");

 ImageWindow.updateWindow();

}

If you haven’t set the AutoDeclaration property then your code will have to
access the control via the full path via the form design.

void clicked()

{

 FormWindowControl imageDisplay;

 ;

 super();

 imageDisplay =

element.design().control(control::imageWindow);

 imageDisplay.imageName("C:\\temp\\Images\\img10-

paraglider.jpg");

 imageDisplay.updateWindow();

}

If you want these methods to be executed each time you change records,
the methods can be placed in the active() method on the form's data
source.

Database stored images

Up to this point we have been relying on the image being stored in the file
system. If this is to work for all users of the system then the static image
files will have to be stored in a common shared network location. What if
you want to make use of an image stored in the database?

You can do this easily with the use of a container field on a table. To
display the image you can then make use of the MorphX Image class to

Windows in Forms 10-3

load data from a field or any container and use the Image() method on the
window control to use this data. For example this code segment makes use
of a window control called imageWindow.

void displayImage()

{

 Image logoImage;

 ;

 //This relies on the imageWindow control being set

to AutoDeclaration.

 //windowsControlImage is the table of the data

source.

 //displayimage is the field on the table.

element.lock();

logoImage = new Image();

logoImage.setData(windowsControlImage.displayimage);

imageWindow.image(logoImage);

imageWindow.widthValue(logoimage.width());

imageWindow.heightValue(logoimage.height());

element.resetSize();

element.unLock();

}

Windows in Forms 10-4

10.2 EXERCISES

Exercise 32 Using properties

· Create a new table with two text fields. One of the fields is intended for
image ID, while the other must be long enough to accommodate both a
path and a file name.

· Then create a form using the table above as data source and
containing the two fields and a window whose properties are set such
that the image specified in field no. 2 is displayed there.

Exercise 33 Using methods

Now alter the form so that the loading of the image is no longer managed
by the properties above, but rather by methods placed under the form's
data source.

Exercise 34 Selecting a file

Add code to the form so that it is no longer necessary to enter a path and
file name in field no. 2. Instead, the form may have a button that activates a
file selection function where path and file name are automatically entered in
the field. (You may want to refer to the SysImportDialog form.)

Exercise 35 Using a stored image

Reference to Appendix

Lookup Forms 11-1

AX-300-ILT-052-v01.00-ENUS

Lesson 11.

Lookup Forms

At the end of this lesson, you are expected to be
able to:

Know about Lookups for Forms.

Program customized Lookup forms.

Lookup Forms 11-2

11.1 USING LOOKUP

When a table field refers to a field in another table, you have the option of
performing lookups while in the field.

Typically, several other fields are displayed on the list of possible values
from the field that is being referred to. We know that two of the fields stem
from the table properties TitleField1 and TitleField2.

In addition to this option, an extra field is added to the list each time an
index is created in the reference table. This field is the first component of
the index.

Naturally, it would be very time-consuming to create indexes in tables just
because the fields represented in their first components will be used in a
list during a lookup. We can only conclude, therefore, that there must be a
better way.

Lookup Forms 11-3

11.2 LOOKUP FORMS

What we need is a form that is specially designed with the desired fields
that are to function in the same way as the lists described above.

You shouldn't have any trouble with the design, but two questions remain:

· How can you open the form from a certain field?

· And how do you get the form to return data from a given record field
that you select?

Building on the form you are opening from

The most complicated part of creating the lookup form takes place on the
form from which you open another element. First, create a field here
containing a button that activates the field's Lookup method. You create
this button by setting the field property named LookupButton to Always.

Lookup() on the field is activated when the system performs a lookup.
According to Best Practices, the most correct way is to create a new
method on the table you perform the lookup on. Thus, the only code to be
placed in lookup() is a call of the new method on the table.

As mentioned above, the new method on the form must activate the form
from which data are collected. This code will look like the one you saw in
the lesson Information Exchange, except for the fact that the run() and
wait() methods on the FormRun object are not used. Instead, they are
replaced by a method from the FormStringControl object called
PerformFormLookup(). This method is to receive the FormRun object.

For an example of the code, see the Accountnum field in the
LedgerJournalTransDaily form.

This code example gives you an idea of what you can do.

 FormRun newlookup;

 Args argForm = new Args()

 ;

 argForm.name(formstr(myLookupForm));

 argForm.caller(this);

 newlookup = ClassFactory.formRunClass(argForm);

Lookup Forms 11-4

 newlookup.init();

 this.performFormLookup(newlookup);

Building on the form that is opened

On the form you are calling, the selectMode() method is used together with
a parameter that is the object handle linked to the field form that is to be
returned. This can be placed in either the form's init or run methods after
the call to super().

 element.SelectMode(field name);

Lookup Forms 11-5

11.3 EXERCISES

Exercise 36 New table with lookup form

· Create a table containing ID, first and last names for technicians
performing tasks in customers' locations.

· You must therefore also create a field in CustTable for technician IDs.
You cannot setup any reference here.

· Then create the lookup form from the Technician table. You want to
sort the technicians according to their first names.

· Finally, make sure you enter the necessary code.

Exercise 37 Filtration

The preceding exercise now gets a bit more advanced.

· In the technician table you are to insert an extra field that specifies the
customer group. The result should be that during lookups only
technicians in the same group as the relevant customer will be
displayed.

List Views 12-1

AX-300-ILT-040-v01.00-ENUS

Lesson 12.

List Views

At the end of this lesson, you are expected to be
able to:

List views in forms

Create menus in forms.

List Views 12-2

12.1 USING LIST VIEWS

List View is a control type that can contain various types of data that do not
necessarily originate from a table. For the same reason, List View requires
code to populate the data in control.

Data can be entered using the add() method, but this method only serves
to insert text.

You also have the option of entering objects of the FormListItem type
using the addItem() method.

The way the data are presented in list view depends on the settings for the
property by the name of View Type.

Drag and Drop

The ability of a user to drag and drop data is an important concept to
windows environment. ListView controls have the ability to utilize drag and
drop but this requires some code to handle the manipulation of the lists.

To utilize drag and drop on the ListView set the DragDrop property on the
list to Manual. You can then add code to override methods like Drop().

Menus

You can create menus that are activated by right-clicking in the form.

For the form's design and underlying controls, you will find the context()
method. By entering code strings on this method, where you create an
object of the Popup Menu class, and finally use the draw() method to
activate the menu.

See the SysDateLookup form for a complete example.

List Views 12-3

12.2 EXERCISES

Exercise 38 Creating a List View

Create a form with a list view containing account numbers for all clients in
CustTable.

Exercise 39 Dragging and dropping between List Views

Create an additional list view in the form from the first exercise, and add
code that allows you to drag account numbers from the first list view and
drop them into the new list view, so that they are moved there.

Exercise 40 Menu

Extend the functionality of the second list view so that you can open a
menu containing two items by right-clicking. The first item allows you to
delete the last transaction, while the second item lets you delete all
transactions at once.

Tree Structure 13-1

AX-300-ILT-041-v01.00-ENUS

Lesson 13.

Tree Structure

At the end of this lesson, you are expected to be
able to:

Create forms containing tree structures.

Understand the programming required by tree
structures.

Tree Structure 13-2

13.1 USING TREE STRUCTURES

In the prior Axapta development courses, you have spent most of your time
working on projects and the AOT. You may not have thought about it, but
you are actually dealing with data represented in a tree structure in both
cases. In this lesson, we will look at how you can present data like that in a
form.

Tree Structure 13-3

13.2 KERNEL CLASSES

To create tree structures in forms, you must use methods located in two of
the system's kernel classes.

FormTreeControl and FormTreeItem.

FormTreeControl is the class whose object is the form control containing
the tree. While objects are created from the FormTreeItem class, the
nodes are in the tree.

Tree Structure 13-4

13.3 METHODS

In this lesson you will be introduced only to the most important kernel class
methods mentioned on the preceding page. For a complete description of
the two classes, go to System Documentation, Classes.

The add() method, which is used to create the tree, is located in the
FormTreeControl kernel class. It must have at least three parameters:

 root = controlname.add(0,0,’text’);

The script above shows how to create the root of the tree. The method
returns an integer that is saved in a variable here labeled root. You will
need the root variable when building branches on the tree.

You can add a branch to the tree in the following manner:

 item = new FormTreeItem(’Text’);

 l1 = controlname.AddItem(root,0,item);

The l1 variable has the same function as root. This is what you use when
you want to add another level of branches.

Tree Structure 13-5

13.4 DATA

On each tree node you may also place data of any type. You can do this
either using new() on FormTreeItem on the method's fourth parameter or
the data() method once the object has been created. You also use data()
to return data on the node.

You may want to load data each time you change tree node. If so, you
must enter code for this purpose in the selectionChanged() method on the
form's FormTreeControl object.

Tree Structure 13-6

13.5 EXERCISES

Exercise 41 Creating a form with a tree structure

Create a form with a tree structure using the company name (can be
retrieved from the CompanyInfo table) as its root and all customer groups
of the business as branches. The form is not going to have a data source.
Instead, create a method on the form that handles data loading. You must
be able to activate this method using a button on the form.

Exercise 42 Expanding the tree structure

Now adapt the above form so that the tree also contains customers
associated with each of the customer groups and transactions for each
customer.

Exercise 43 Fields

Enter fields in the form displaying data on the customer transactions,
including account number, vouchers, data, and amount, so that the fields
are completed when a transaction is selected in the tree. When no
transaction is selected, the fields are to be hidden.

Temporary Tables 14-1

AX-300-ILT-042-v01.00-ENUS

Lesson 14.

Temporary Tables

At the end of this lesson, you are expected to be
able to:

Determine when it is beneficial to use temporary
tables.

Use temporary tables in connection with forms.

Temporary Tables 14-2

14.1 TEMPORARY TABLE FUNCTION

Temporary tables may be used in many contexts. The distinguishing
feature of a temporary table is that the Temporary property is set to Yes.
This entails that data placed in such a table, as opposed to data placed in a
regular table, is only saved temporarily.

In a 3-tier environment, temporary tables are instantiated where data is first
accessed. Meaning the first insert determines whether a table lives on the
client or on the server.

Temporary Tables 14-3

14.2 PURPOSE OF TEMPORARY TABLES

The purpose of temporary tables is to save a collection of data, for instance
for display in a form or a report. Since the quantity of data is not going to be
used in other contexts and is saved in various other tables, there is no
reason to save it.

The system already contains several tables of this type. They are not hard
to find, as their names all start with tmp. Later, when completing exercises
using temporary tables, you can either use one of the existing tables or
create a new one containing the fields you need.

Temporary Tables 14-4

14.3 USE

In general, you use temporary tables in much the same way as you use
regular tables. The crucial difference is that the data is deleted when there
is no longer a table buffer attached.

If you want to use a temporary table in a form, you will have to insert the
table in the form's data source.

Then you enter data into the table (buffer) using the form's init method. At
the end of the form's init method you must transfer the table buffer to the
form's data source, in order to avoid erasing data.

DatasourceName.SetTmpData(TableBufferName);

The same applies if you want to use a temporary table in a report.
However, in addition to the init method, you must also enter code in the
report's fetch method. Here, you use the send() method (a method on the
report). This method transfers data to the report's design. For a more
detailed description of these and other methods on reports, see the
Developer's Guide.

Best practice

• A temporary table should live on the tier where it is used.

• If a temporary table is used on several tiers, the table should live
on the tier where the largest number of inserts and updates is
performed.

Temporary Tables 14-5

14.4 EXERCISES

Exercise 44 Temporary table in a job

· The purpose of this exercise is to demonstrate when you need a
temporary table. Create a job that allows you to output customer data
on screen using print and pause. The output must contain the account
number, name, and number of customer transactions and should be
set up so that the customers are output in a sequence analogous with
the transaction number.

Exercise 45 Temporary table in a class

· Create a class with two methods, each one holding half the code from
the job above. One method enters data in the temporary table, while
the other retrieves it.

· Did everything go as expected?

Exercise 46 Temporary table in a form

· Present the data from the first exercise in the same order in a grid on a
form.

Temporary Tables 14-6

Exercise 47 Temporary table in a report

· Output the above data in a report. (Tip: You may want to look at the
Cheque report code.)

Exercise 48 Temporary table for spool file administration - Optional

· You are going to display all files with the extension ’spl’ on c: in a form.

· Create the form so that it updates itself automatically every 30
seconds.

· Finally, allow the user the option of selecting the files he or she wants
to delete, and create a button for activating the delete function.

Validation Techniques 15-1

ID AX-300-ILT-043-v01.00-ENUS

Lesson 15.

Validation Techniques

At the end of this lesson, you are expected to be
able to:

Understand the purpose of validation techniques.

Recognize where validation techniques are used
in Axapta.

Use the validation techniques in Axapta.

Validation Techniques 15-2

15.1 VALIDATION METHODS

Overview

When you enter, alter or delete data, it may be necessary to check or
validate whether the change is OK. You may already have looked at Delete
Actions, which perform a validation whenever somebody tries to delete an
entire record from a table.

To ensure that the user does not enter the wrong type of data in a specific
field, you should validate – which means check the content of the entered
data. You can also use validation to give the user the message that you
cannot honor his request. For example if a user wants to book a meeting
room, which is already booked.

Because of the rather complex architecture of Axapta, you will have to
consider which validation method you want to use, where to run it
(Client/server) and on which element to place it on.

.

Validation Techniques 15-3

15.2 DELETE ACTIONS (REVIEW)

One situation where you will need validation, is when you try to delete a
complete record in a table. Let us look at one example:

You attempt to delete a record in CustTable. But the CustTrans table
contains transactions for the relevant customer. Therefore, you cannot
allow the customer to be deleted. You can prevent this by setting up a
"delete action".

In CustTable under the Delete Actions node, a Delete Action has been
created for the CustTrans table. In the properties for this Delete Action, you
can see that CustTrans is selected as table and that the delete action type
is set to Restricted. This means that a customer cannot be deleted as long
as related transactions exist in the CustTrans table. You have the following
options:

DELETE ACTIONS CONSEQUENCE

None The customer is deleted, transactions remain

Cascade Transactions are automatically deleted,
together with the customer

Restricted If there are transactions, the customer cannot
be deleted

Cascade + Restricted Not implemented

Validation Techniques 15-4

15.3 TABLE VALIDATION METHODS

All tables automatically inherit three methods that are specially designed for
validation. These methods are:

METHOD NAME ACTIVATED WHEN

ValidateDelete When attempting to delete an entire
record. Checks delete actions.

ValidateWrite When saving a record if changes have
been made to one of the record fields.

ValidateField Each time you change and exit a field.
May therefore be used to evaluate a
single field. You may encode rules for
"legal" values in fields.

These methods are meant to be overridden fully or partially, as needed.

Example

Let us anticipate that you want to make sure that the users get a warning
whenever a the value of CreditMax for a customer exceeds 1000000.

This can be done in the method Validatefield() on custtable. Please not that
some code have already been placed there, so we only have to add a few
lines:

boolean validateField(fieldId p1)

{

 boolean ret;

 ret = super(p1);

 switch (p1)

 {

 case fieldNum(CustTable, VATNum) :

 ret = TaxVATNumTable::checkVATNum(this.VATNum,

this, p1);

 break;

 case fieldNum(CustTable, CreditMax) :

Validation Techniques 15-5

 if (this.creditMax < 0)

 {

 ret = checkFailed("@SYS69970");

 }

 //New code for this Example

 else

 {

 if (this.creditMax >= 100)

 {

 if (box::yesNo("CreditMax exceeds

100 do you accept this",DialogButton::No) ==

DialogButton::No)

 ret = checkFailed("The CreditMax have not been

changed");

 }

 }

 //End of New code for this Example

 break;

 }

 return ret;

}

Other validation methods

Data sources on forms validateWrite, validateDelete

On form controls (StringEdit, IntEdit
etc.)

validate

Validation Techniques 15-6

15.4 VALIDATION SEQUENCES

Validation of data is used to validate the contents of the data entered by the
user. Axapta has two different methods to validate data. Validation can be
put directly on the field or the table. A validation method always returns
either true or false. Axapta has two different approaches to validation.
The first validation happens when you leave a control. The order is as
follows:

The methods Leave, the first Validate and the first Modified are placed
on the control itself. The methods Validate and the second Modified
are placed on the data source. The Validate Field is placed on the
table itself.

Secondly when you leave a record the system goes through the following
process

First of all the method ValidateWrite is called, then the method Write,
these are placed on the data source. Depending on the record being
worked on, if new, or its content are just being updated the Insert or
Update method is called, which is then placed on the table.

Finally, when a record is deleted, the system runs through the following
steps:

The first Delete and first ValidateDelete are placed on the data

Validation Techniques 15-7

source. The second ValidateDelete and Delete are placed on the
table.

When working with the validation methods, the ‘this’ pointer does not
refer to the data source, table or field, but to the current row being edited.
To access the table we have to create a table buffer or we can access the
original value of the field by using the orig method of the ‘this’ pointer,
followed by the attribute in the table you wanted.

Example

 print this.orig().AXATeacherId;

 print this.AXASTTeacherId;

Prints the old value of the AXATeacherId followed by the new value of the
AXATeacherId. This code is actually called twice since it is both called
from the data source and the table.

Validation Techniques 15-8

15.5 EXERCISES

Exercise 49 Validate on the table BankGroup.

Create a validate method for the BankGroup table. The following additional
validation requirement must be made:

The first letter of a BankGroupId may only be used once. So if a
bankgroupId "MyBankgroup" is used, "MySometingElse" may not be used,
Because the "M" is already used.

Queries 16-1

AX-300-ILT-044-v01.00-ENUS

Lesson 16.

Queries

At the end of this lesson, you are expected to be
able to:

Understand the query element

Understand where queries can be used

Create queries

Queries 16-2

16.1 WHAT IS A QUERY?

A query is an application element found in the AOT, just like reports and
forms. It can be viewed as a definition of a data search.

You might already have tried to perform a data search using select
combined with while. Queries are a better option, as they grant the user
who will employ them at a later stage, much greater freedom with regard to
specification of ranges and sorting order.

A Query Example:

In principle, a query consists of one or more data sources (tables to be
searched) and a set of methods that are executed when the query is run. In
this example, CustTable serves as data source, data is to be sorted after
the Name field and restricted on the AccountNum field.

As previously mentioned, the advantage is that the user may modify this
setup when running the job.

Queries 16-3

16.2 EXECUTION

A query is not particularly interesting in itself, in that it cannot do anything
but search through selected data in a given order. It does not get exciting
until you write a string of code that uses and executes our query.

To do this, we must create an object based on a kernel class called
QueryRun. This object is attached to an object of the Query type created
from the query above called Test. This code may be written as follows:

Example
CustTable ct;

Query q =new Query('Test');
//This is where you create your query (test) for an
object

QueryRun qr=new QueryRun(q);
//This is where you create an object of the QueryRun
type.

if (qr.prompt()) //this is where you start and have
"true"
//returned-

 //if you click OK.

{

while (qr.next()) //next() changes record
and returns //’true’-

 { //provided that a record exists.

ct= qr.get(TableNum(CustTable));

print ct.Name;
//get() returns the content of a record -

 } //in the specified table.

}

pause;

If two tables had been placed under data sources in the query above, it
would have been necessary to use get() twice inside the loop if data were
to be retrieved from another table.

Queries 16-4

16.3 KERNEL CLASS QUERY, ONE TABLE

As seen above, an existing query from the AOT can be run using the kernel
classes QueryRun and Query.

There are some kernel classes that may be used in connection with
queries. In fact, it was not necessary to create the query above in the AOT
in advance; you could also have created it in the code by simply using
some of the kernel classes.

This structure would appear as follows:

Example
Query q;

QueryRun qr;

QueryBuildDataSource qbd;

QueryBuildRange qbr;

q; =new Query();

qbd =q.AddDataSource(TableNum(CustTable));
 // Add data source here

qbr =qbd.AddRange(FieldNum(CustTable,AccountNum));
//Add range here

qbd.AddSortField(FieldNum(CustTable,Name));
 // Add sorting field here

qr = new queryRun(q);
 // execution of query;

etc.

The example above uses the QueryBuildDataSource and
QueryBuildRange kernel classes. We simply create two new objects out
of these classes and end up with a query object ready to be executed.
Moreover, these classes have several useful methods. The Value() method
located in the QueryBuildRange class serves as an example. This method
can be used to enter data in the range fields, as well as retrieving values
from the fields.

Queries 16-5

16.4 JOIN

Use join to link tables to each other in a search. The command is used
almost as select, as almost the same subcommands are available to both
commands.

The following example shows how you can search for transactions
attached to the individual customer:

Example

 CustTable CT;

 CustTrans CTR;

 While select AccountNum,Name

 From CT

 Order by AccountNum

 Join* from CTR

 Where(CTR.AccountNum==CT.AccountNum)

 {

 //For example code for printing data

 }

It is important to specify the where statement correctly after join, because
it is responsible for how the data is linked.

Join works differently according to the command preceding it.

The following table describes the options.

Command Description

Inner Customer is only selected if any
attached transactions exist.

All his transactions are selected. If
nothing else is specified before join in
the code, inner is automatically used.

Queries 16-6

Outer Customer is selected no matter
whether any transactions are attached
to him or not.

All his transactions are selected.

Exists Customer is only selected if
transactions are attached to him, but
only one attached transaction is
selected.

Notexists Customer is only selected if no
transactions are attached to him.

No transactions are selected.

Queries 16-7

16.5 KERNEL CLASS QUERY, SEVERAL TABLES

Using more than one table is very similar to using one table. You just need
to create one more instance of the data source. You might need to link the
two data sources together.

Example

Query q;

QueryRun qr;

QueryBuildDataSource qbd1,qbd2;

QueryBuildRange qbr;

QueryBuildLink qbl;

q; =new Query();

qbd1 =q.AddDataSource(TableNum(CustTable));
// datasource 1

// range and sort field for data source 1

qbr = qbd1.AddRange(FieldNum(CustTable,AccountNum));

qbd1.AddSortField(FieldNum(CustTable,AccountNum));

// datasource 2

qbd2 = qbd1.AddDataSource(TableNum(CustTrans));
// datasource 2

qbd2.JoinMode(JoinMode::Innerjoin);
 // join mode

qbl = qdb2.Addlink(fieldnum(Custtable,AccountNum),

fieldnum(Custtrans,AccountNum));
 // relation between data
sources));

qr = new queryRun(q);

// execution of query;

if (qr.prompt())

 etc.

Note: Format “normal” begin:

However there may be an easier way to link two tables together in a query.
If relations have been specified in the data model (data dictionary) as it is
the case in this example, you could have set the property relations the
second data source to the value “true” like this:

Qbd2.relations(True);

Queries 16-8

In that case you will not need to use the class

“QueryBuildLink”.

Note: Format “normal” End:

Queries 16-9

16.6 GENERAL

It is not very common to build up a query from scratch, as shown above.
The only reason it was done here is to show how easy it really is. The
advantage of partially designing queries and other application elements in
this way is that the design may be modified when the job is executed,
which makes the system much more flexible

Queries 16-10

16.7 JOB AID

Function Procedure

Query using several
tables

• First, create the needed handles/objects
for the first data source in the query.

• Then create the second data source,

• Then create the relation between the
two data sources.

Now you have a buffer for the two tables.

Note: the second data source is added to the first
data source and not the query itself.

Queries 16-11

16.8 EXERCISES

Exercise 50 Running a query

· Build a query in the AOT for the purpose of searching through the
Customer table and the Customer Transaction table. Sort the query on
Customer name or ID.

· Then create a job that uses this query to print the amount of sales
orders to the related customer.

static void Exercise1(Args _args)

{

 QueryRun queryExercise = new

QueryRun(queryStr(QueryExercise));

 CustTable custTable;

 CustTrans custTrans;

 AmountMST amountMST=0;

 Name name="";

 ;

 if (queryExercise. ????????)

 {

 //the query is sorted by Customer.

 while (queryExercise. ????????)

 {

 custTable = ????????

 custTrans = ????????

 if (name != custTable.Name)

 {

 print custTable.Name+" "+

num2str(amountMST,10,2,2,1);

 //start calculating for the next

customer.

 name = custTable.Name;

 amountMST = 0;

 }

 //increase the total amout of sales orders

 amountMST += custTrans.AmountMST;

 }

 }

 pause;

}

Queries 16-12

Exercise 51 Building a query

· Create a job that prints all customer names by generating a query on
the custtable. . (Do not use a query from the AOT, but rather a query
generated automatically by the job)

Exercise 52 Build a complex query

· Redo the previous exercise, but create the query in X++ as well (Do
not use a query from the AOT).

Using System, X and Dict. Classes 17-2

Doc-ID: AX-300-ILT-045-v01.00-ENUS

Lesson 17.

Using System, X and Dict.
Classes

At the end of this lesson, you are expected to be
able to:

Understand how to use System Classes

Understand what X-Classes is

Understand when to use X-Classes

Understand the purpose of Dict. Classes

Manage the use of methods on Dict. Classes

Using System, X and Dict. Classes 17-3

Doc-ID: AX-300-ILT-045-v01.00-ENUS

17.1 USING SYSTEM CLASSES

A system class is an interface to functionality defined in MorphX, for
example to create, or run a form.

Using System, X and Dict. Classes 17-4

Doc-ID: AX-300-ILT-045-v01.00-ENUS

17.2 X-CLASSES

In the node Classes under the node System Documentation you will find
the X-Classes. The X-Classes provide you with a variety of methods to
execute forms, reports, queries, create tables and so on. When you try to
open the X-Classes you will not open the code, but instead a file displaying
information about the specific method or class.

X-CLASS SYSTEM CLASS DESCRIPTION
xApplication Application Returning information

concerning Company, System
date, etc.
Methods can be overridden.

XclassFactory ClassFactory Used when you want to run
Forms, Reports, and Queries.
Methods can be overridden.

Xcompany Company Returning Company
information.
Methods can be overridden.

Xinfo Info Used to display information,
warning and error-messages to
the user.
Methods can be overridden.

Xrecord When you are creating a new
table, the table inherits its
methods from this class.
Methods cannot be
overridden.

Xref Used to update x-references,
when compiling an object.

Xsession Session Returns information concerning
logindate, logintime, userID,
etc.
Methods can be overridden.

Using System, X and Dict. Classes 17-5

Doc-ID: AX-300-ILT-045-v01.00-ENUS

XClassFactory

An example of an X Class is the xClassFactory class which contains
methods for running forms, queries, and reports. Use this class to overwrite
the functionality of the execution of forms, reports and queries. For
example you can show an info box with the name of the form, every time a
form is run.

Using System, X and Dict. Classes 17-6

Doc-ID: AX-300-ILT-045-v01.00-ENUS

XInfoClass and Infolog

If you as a user execute a job, for example posting a journal, this will lead
to the generation of several dialog boxes where you will have to click OK
every time you want to continue. This can be avoided by using the infolog
functionality.

Infolog is the name of an object handle generated by the system, and
attached to an object instantiated from the XInfo class.

To use the infolog

The method error() uses infolog. Other methods using the infolog are for
example checkfailed() from the Global class, and the
checkAllowPosting() method.

But infolog can also be used directly. Infolog has the method add(), which
is used to insert lines that the user will see as messages. The following text
describes the syntax of the add() method:

 Infolog.add(Exception::<Value>,<Text>);

The value of the exception specifies how the message is presented (Info,
Error, Warning, and so on). The text specifies the text line that is included
in the message.

Note: Infolog.add() is only used in situations where Info(), Warning(),
Error(), Checkfailed() are inadequate. For example when using the
exception Break().

If the above described code line was executed in a job, a message would
appear in a window. If add() was used more than once, a corresponding
number of messages would appear in the same window.

If you want to delete the content of the window, use the method clear():

 Infolog.clear();

You can also cut or copy lines from the window using the methods cut()
and copy(). These methods return a container, that includes the cut or
copied lines.

Infolog

Using System, X and Dict. Classes 17-7

Doc-ID: AX-300-ILT-045-v01.00-ENUS

Example of use

You want to copy 2., 3., and 4. line to a container variable called c.

 C = infolog.copy(2,4)

If you want to insert the variable in a window, use the method view().

 Infolog.view(c);

The view() method can be used as an alternative to the add() method, that
only inserts one line at a time.

Prefix

If a job generates more than one message, these will be grouped in the
window with a common heading. To specify what the text in the heading,
use the function SetPrefix().

If you want to print two lines with a common heading: ‘Result’, during a job,
the code will look as follows:

 SetPrefix(‘Result’);

 Infolog.add(Exception::info,’Testline1’);

 Infolog.add(Exception::info,’Testline2’);

Using System, X and Dict. Classes 17-8

Doc-ID: AX-300-ILT-045-v01.00-ENUS

17.3 THE GLOBAL CLASS

The global class is the class that holds the standard functions used in the
X++ development environment. If you want to add or change methods to
the global scope of Axapta you can do this in the global class.

Note

Changes to fundamental classes should be made with caution since they
will be reflected throughout the entire application.

Using System, X and Dict. Classes 17-9

Doc-ID: AX-300-ILT-045-v01.00-ENUS

17.4 USING DICT CLASSES

Under kernel classes, you will find a number of classes whose names start
with Dict, which is short for Dictionary. These classes function as
information registers for some of the system's application elements.

There are a total of 10 of these classes, each of which can be used to
retrieve information regarding tables, fields, or classes.

Example

You need to determine how many values a certain Base Enum may take
on. One way to solve this problem would be to go into the AOT and look it
up. But what if this happened to a user who don’t have access to the AOT?

There is a class called DictEnum. When you create an object of this class
with new() as a parameter, it is possible to receive the ID of the Base Enum
you want to examine. You may then use the values() method that returns
the number of elements on the relevant Base Enum.

Using System, X and Dict. Classes 17-10

Doc-ID: AX-300-ILT-045-v01.00-ENUS

17.5 EXERCISES

Exercise 53 Viewing Dict classes

Open System Documentation/Classes to locate the 10 Dict classes.

Based on their names and methods, you should have no problems
determining their purpose.

Exercise 54 Testing DictClass

Create a tool that allows the user to select a certain class and then receive
information on its number of static and dynamic methods and their names.

Exercise 55 Testing DictTable

Create a clean-up tool that allows the user to delete all records in all tables
carrying the recId selected by the user.

Exercise 56 Modify formRunClass

Modify the formRunClass method in the ClassFactory class so that when
we open the Students form a message will be displayed.

Using System, X and Dict. Classes 17-11

Doc-ID: AX-300-ILT-045-v01.00-ENUS

Exercise 57 X Classes

Create a job that can display the name of the current user

Macros 18-1

AX-300-ILT-046-v01.00-ENUS

Lesson 18.

Macros

At the end of this lesson, you are expected to be
able to:

Understand the purpose of using macros.

Know the types of macro that are available.

Understand the syntax of macros.

Macros 18-2

18.1 MACROS

A macro typically contains lines of X++ code that can be useful in several
places. The advantage of defining such lines as a macro is that the
maintenance is done in one place only.

It is a preprocessor capability of the X++ compiler. Everywhere the macro
is used in the code it will be replaced with the definition of the macro. You
will not see this happen in the code but it is the way the X++ compiler deals
with macros.

A simple macro contains a string. The behavior is similar to the normal
string only it is a static piece of code, so it can't be changed dynamically.

The macro begins with #

Example:

 #define.text("hello world');

 ;

 print #text;

When a macro is used in a lot of different places, it can be handy to place
the macro in a macro library (see macro node in AOT tree)

A macro can also contain some code. The value 'a' is incremented with the
value text. This is of course impossible. But the X++ compiler will not
compile the line a+="Text"; When the define is included in the code
(remove "//"). A compile error will occur.

Example

 int a;
 //#define.debug("1");
 ;
 a = 9;
 #if.debug
 a +="text";
 #endif

Macros are handy for debugging the code. Encapsulate your print
statement with macros and you can remove all print statements just by
removing the define.

Macros 18-3

See the Developer’s Guide for all macro commands.

It is also possible to make macro functions.

 int a;
 str b;
 //#define.debug("1")

 #LOCALMACRO.test
 #if.empty(%1)
 print "empty value";
 #endif
 #if.debug
 %1 +="test";
 #endif
 #ENDMACRO
 ;
 a = 9;
 b = "hello world';
 #test(a)
 #test(b)
 #test

The above example uses a %1. This is the notation for parameters in a
macro function. The second parameter contains %2, etc. It is possible to do
checks on the parameters.

Note

If the macro function contains compile error, the compiler shows only error
on the lines of code that use the macro function

Macros 18-4

18.2 MACROS VS. METHODS

Based on the description above, it may be hard to see what the real
difference is between macros and methods. But they have quite a few
different properties that are important to know about:

· A macro is nothing but a string of text.

· As opposed to methods, a macro cannot be translated independently.

· If the code of a macro is altered, all application elements using it must
be recompiled before the changes take effect.

· Variables declared in a macro, are not embedded.

· When using a macro, you must place a # before its name.

Macros 18-5

18.3 MACRO TYPES

Whether you are dealing with a macro that operates as a constant or an
entire string of code, there are three types of macros:

· Global macros. Macros of this type are created separately in the AOT
under the Macros node. System users will then have free access to
macros of this type, irrespective of the method in which it is used.

· Local macros on methods. As opposed to a global macro, there may
be times when you want to use a macro in connection with a single
method. If that is the case, you create the macro on the relevant
method. Thus, you won't be able to access this macro from other
system locations.

· Local macros in libraries. Rather than placing the macros locally, as
in a single method, you can also choose to group them in a library. The
advantage of doing so is that macros that are related to one another
can be gathered in one place. Macro libraries are created in the same
place as local macros. To distinguish between macro libraries and local
macros, the names of macro libraries are spelled out only in upper
case.

Examples

For examples of how to encode macros, please see the Developer's Guide.

Macros 18-6

18.4 JOB AID

Function Procedure Keystroke

Create a macro

Create a new macro

Create a new macro
from the Macro node
in the AOT

Ctrl+N or right-click
and select new macro

Work routine

Open the macro

Open the new macro
so you can edit it

Right-click and select
edit

Work routine

Write your code

Define the system path

For an example open
some of the existing
macros.

Save

CTRL+F3

Ctrl+S

Macros 18-7

18.5 EXERCISES

Exercise 58 Local macro in a job

· Create a new job. The job must contain a macro constant and a local
macro that is able to output first and last name on the screen — print
and pause.

· The job is to output the macro constant and use the other local macro.

Exercise 59 Global macros

· Now create a global macro that can receive and output a text string.

· Then test the macro in a job.

· What happens if you alter the macro after it has been entered in the
job?

Exercise 60 Macro library

· Create a macro library with one local macro that is able to receive
three numbers and output the sum of these.

· Test it in a job.

· Now edit the macro so that it still works when opened with only two
parameters.

Macros 18-8

Exercise 61 Calculation macro

· Copy the macro from the previous exercise, but adapt it so that it
receives two numbers and a third parameter +, -, x or ÷. Depending on
the third parameter, the macro will output the sum of the two numbers,
subtracted, multiplied, or divided by one another.

Reports 19-1

DocID: AX-300-ILT-067-v01.00-ENUS

Lesson 19.

Reports

At the end of this lesson, you are expected to be
able to:

 Be familiar with the Element operator.

 Develop more advanced reports.

Use a display method in a report.

Use the Args object and the Element
operator to synchronize a report with a
form.

Reports 19-2

19.1 REPORTS, ARGS, AND ELEMENT

In a previous course you looked at how to develop a report. However, you
have yet to experiment with coding in reports. That's what you'll be doing in
this lesson. Coding in reports is also a good opportunity to use Args and
Element.

Reports 19-3

19.2 DISPLAY METHODS

Display methods can be used successfully in reports in connection with
direct lookups in the database and/or calculations. It is important to look at
where to locate these.

You have the following options:

· Under the report's design methods, a logo, for example, may appear.

· Under the table methods used by the data source of the report.

If you are using the table methods, the table label must be specified under
properties in the field using the display method (in the same way as for
forms).

Example

Check the Developer’s guide for an Example showing how to use a display
method.

Reports 19-4

19.3 SYNCHRONIZATION

In connection with forms, you have seen that two forms may be
synchronized with one another without requiring any code. From Axapta,
you may also synchronize a report with a form.

 Example

Let's look at an arbitrary report searching through CustTable. It must be
synchronizable with a form displaying customers, so that if the report is
activated from a form containing data from CustTable, only the customer of
the relevant record will be included in the report. This can be done in
several ways: If you alter the report properties so that Autojoin is set to Yes
as shown below, the report will be synchronized.

Example of synchronization using coding

In the section on queries you looked at the kernel class called
QueryBuildRange. It is used for the generation of objects that are employed
in queries. Moreover, it contains the value() method, which you can use to
enter range values. But in order to get this to work, you must look at the
two tools called Args and Element.

Reports 19-5

Args

Args is a kernel class. The name stands for Arguments. You may
remember seeing the class in connection with job parameters and the
lesson about information exchange. Each job receives a parameter of this
type. In fact, the kernel uses the Args class to generate objects used for
data transfer, for example from a form to a report.

Element

Element resembles the this operator. A report consists of several objects.
The this operator can be used to open an object's methods inside that
same object. Likewise, the Element operator is used to call methods within
an entire report, even if the report consists of a collection of objects. You
can use the Element operator in reports and forms.

 Example

So you can use Elements and Args across several objects. A good
example of this is using code to synchronize.

In order for the synchronization to be successful, you must enter code onto
the report's run method. You may write it as follows:

CustTable ct;

QueryBuildRange qbr;

if (element.args().dataset()==TableNum(CustTable))

{

//code is executed if args contains a table buffer from
CustTable

 ct =element.args().record();

//Set ct = the relevant record saved in args

 qbr=element.query().dataSourceNo(1)

.findRange(FieldNum(CustTable,AccountNum));

//Set qbr = the query's ranges on AccountNum (if any)

 if (!qbr)

//If it does not exist, create it below

Reports 19-6

 {

 qbr=element.query().dataSourceNo(1)

addRange(FieldNum(CustTable,AccountNum));

 }

qbr.Value(ct.AccountNum);

//The ct value is used as range

 element.Query().interactive(false);

//The range box is closed

 }

super();

Using the Element designation, you gain access to the report methods. In
this case, you could have achieved the same result using this.

Reports 19-7

19.4 EXERCISES

Exercise 62 Display methods

· Create a display method on the EmpTable. which returns the local
phone number when no phone number exists.

· Create a report which prints usernames and their related phone
number. If no phone number exists, their related local phone number is
printed.

Exercise 63 Synchronization

· Create a print button on the Employee Form. This report only prints the
report of exercise 1 from the selected employee. When no employee is
selected a message should appear when the print button is pressed.

Report Design 20-1

AX-300-ILT-047-v01.00-ENUS

Lesson 20.

Report Design

At the end of this lesson, you are expected to be
able to:

Present and use reports with several designs.

Report Design 20-2

20.1 USING REPORT DESIGN

In this lesson you will look at how to work with reports, with a special
emphasis on your options with regard to design.

Previously you have worked with reports having only a single, very
traditional design. But reports can actually be developed with several
different designs.

The question is therefore which design to use when executing the report?

If you haven't done anything in terms of code, the system will always use
the first design.

If you prefer to use one of the other designs, you must use code to make
sure the system uses the one you want. You can do this by means of the
design() method. As a parameter, the method receives the name of the
report design. A suitable place to use this method might be on the report's
run method.

Programmable sections

As a part of a report's design, you may create one or more programmable
sections. This part of the design may contain data and/or text. The crucial
difference is that designs of this type must be activated by code.

Execute() is the method used for activation. As a parameter of this method,
you specify a number (the number of the relevant programmable section).
In the exercises for this lesson, the method may be placed in the fetch
method.

By making the Super() call in the ExecuteSection method of the
ProgrammableSection conditional, you can make the printing of these
sections conditional.

Report Design 20-3

20.2 EXERCISES

Exercise 64 Report with two designs

Create a report with two designs.

The report is to contain data from the employee table. The idea is that the
report may be activated either from the employee form or from the main
menu.

If the report is activated from the main menu:

The design must be constructed as a list where the selected employees are
listed with ID, name, and phone number in descending order.

If the report is activated by clicking a button on the employee form:

Only data for the relevant employee will be output, but in a design where
the data fill the entire page.

Exercise 65 Report without data source

Create a report without data source, but with a programmable section
containing a control of the Integer type.

Create an integer variable in the report's classDeclation method.

Finally, create a loop in the report's fetch method where the variable
declared above is counted from 1 to 10. For each round, the report's
programmable section should be activated and the variable output. In this
way, the report will fill 10 lines.

This exercise may not appear to be particularly meaningful, however if you
implement the next exercise it will show you how this function may be put
to constructive use.

Report Design 20-4

Exercise 66 Absence report – Optional

You now want to record the employees' absences. This requires a new
table with the following fields: Employee ID, Start Date, and End Date.

Then create a form using the new table as data source.

The hardest part of this exercise is the absence report, where employee
absence is to be output for a selected month.

The report has a matrix-like design that looks like this:

January 1999 1 2 3 4 5 6 7
 etc.

ARN XX XX

FJO XX XX XX

IGS XX XX

KBU XX

Wizard Wizard 21-1

AX-300-ILT-048-v01.00-ENUS

Lesson 21.

Wizard Wizard

At the end of this lesson, you are expected to be
able to:

Understand the purpose of the Wizard Wizard.

Understand how to use the Wizard Wizard.

Wizard Wizard 21-2

21.1 WHAT IS THE WIZARD WIZARD?

A Wizard is a tool that may be used to create various things, such as a new
report or a new item in the Inventory Management module. The purpose of
wizards is to guide the developer/user through various procedures, thereby
making them less complicated.

The system contains a number of wizards, one of which is called the
Wizard Wizard. The purpose of this wizard is to simplify the task for
programmers developing new wizards.

The two wizard types

Wizard Wizard creates a class, a form, a new project and a menu item all
with the same name selected by the programmer. This name will
automatically end with Wizard.

Once the name is selected, you must specify which purpose the new
wizard is supposed to serve.

You have the following options:

· Standard Wizard is a wizard type intended for regular tasks. The
Report wizard is an example of a standard wizard

· Default data Wizard is used to help the user create necessary default
data like address information and number sequences. All default data
wizards are automatically included in the system’s Default data Wizard
and its status, whether it has been executed or not, is indicated. The
Default data Wizard can be started from the Axapta Setup Wizard that
is automatically activated when you first start Axapta, and from the
Company accounts menu.

Once you have selected the type, you specify the number of steps. The
Wizard Wizard has then fulfilled its purpose. You have now created a class
and a form grouped in a project. The two application elements will function
as a new wizard, but not until you have created new methods and
expanded the form's layout with texts, etc.

Guidelines and tips for developing wizards

You can find general development guidelines and tips for developing
Wizards in the Developer’s Guide.

Wizard Wizard 21-3

The wizard form and wizard class

The wizard form has one tab and the number of tabs you specify as steps
in the wizard. The form has two methods which you can read about in the
developers guide.

The wizard class you create will either extend the SysWizard class or the
SysDefaultDataWizard depending on the kind of wizard you chose to
create.

Below you can see some of the methods in this class:

Useful methods on the SysWizard class

boolean validate()

This method is called before the
wizard is closed. Return false if the
user input is invalid. This will
prevent the run() method from
being called when the user clicks
the Finish button.

The method is used to validate user
input.

FormRun formRun()

Returns a FormRun which is an
instance of the form of the same
name as the class.

This method is always overridden
and should not be changed.

static void main(args args)

Creates a new instance of the
wizard and calls wizard.run on the
SysWizard class.

This method is always overridden
and should not be changed.

void run()

This method is called when the
user clicks the Finish button – if
validate() returned true.

void setupNavigation()

Use this method to set up whether
the Next and Back buttons should

Wizard Wizard 21-4

be enabled from the start.

Default is that all is enabled, except
back in the first step and next in the
last. The buttons can then be
enabled runtime when a certain
condition is fulfilled.

Useful methods on the SysDefaultDataWizard class

boolean Enabled()

Determines whether the wizard
should be displayed in the list of
basic setup wizards

boolean MustRun()

Determines whether the base data
is already there or whether the
wizard should create it.

str Description()

Returns a short description of what
the wizard does.

The description is used in the
wizard’s caption if the Caption
property has not been set.

Wizard Wizard 21-5

21.2 JOB AID

Function Procedure

Create a wizard A step-by-step guide can be found in the
Developer’s guide: Create a wizard.

Wizard Wizard 21-6

21.3 EXERCISES

Exercise 67 New wizard

· You will be creating a new wizard to be used for developing list
images. You must therefore be familiar with the following kernel
classes: Form, FormBuildDataSource, FormBuildDesign,
FormBuildGridControl, and FormBuildStringControl.

· To test some of these methods in practice, you must create a job able
to create a form that contains data from custtable and which includes
a grid with the AccountNum and Name fields.

Exercise 68 Create a wizard

· Now use the Wizard Wizard to create the basic part of the new wizard.

· Then make the necessary adjustments to the class and the form, to
ensure that the new wizard will function as intended.

· There should be four steps where the user may specify names on the
form, as well as which table and fields he or she wants to use.

Introduction to X++ Advanced I

DocID: AX-300-APP-069-v01.00-ENUS

Appendix A.

Introduction to X++ Advanced

This appendix contains:

Guidelines for instructors prior to and starting the
course

Information about the requirements for the
course, for example, equipment, prerequisites

Notes to instructors for Lesson 1 (Introduction)

Introduction to X++ Advanced II

GENERAL INFORMATION

Prerequisites

• Successful completion of the General Axapta Application Test and
X++Basic online course.
It is highly recommended that you have worked with the X++ language
and MorphX Development environment for at least 3-6 month before
this class.

· Access to an Axapta installation with a clean (that is, without additional
transactions or any other alterations) demo data file imported into it.

· Basic programming skills are a MUST. Try not to get side tracked by
such topics, or you will not complete the course in the designated time.
Perhaps even refer participants to other courses covering such topics –
as well as additional areas of training in the Axapta curriculum. Have
several copies of your curriculum handy for participants who want to
know more…

Note

It cannot be emphasized strongly enough to enforce these prerequisites!

Course prerequisites are important for gaining the most from this course (or
any course). Learners need to experience some success – it gets very de-
motivating to continuously run into problems and rely on the instructor (or
other participants). Participants lacking the necessary prerequisites for a
particular course may be dismissed from the classroom at their own
expense, at the discretion of the instructor. Please communicate this
message clearly with NSC participants.

Every country must strive to make the learning experience as productive
and efficient as possible. Screening students to insure a common starting
basis for this class (and other classes) is an effective way to optimize the
time spent in the classroom. The centrally determined prerequisites are set
with this in mind.

This course requires a successfully passed test in order to register and you
can monitor that every potential participant meets this criteria via the e-
Academy client. The Training responsible person in each NTR has
received access to this client, along with instructions on how to use it.

Introduction to X++ Advanced III

Please contact this person in your NTR or Michael Aksglæde (Project
Manager for e-Academy), if you experience problems with this client.

In addition to these prerequisites, it is also recommended that participants
have completed the “Essentials” online courses and the General Microsoft
Axapta Application Workshop. However they are not compulsory, and
hence not a prerequisite for this course.

Although not prerequisites, the training development team strongly
recommends these courses as this course was developed with these
courses in mind as recommended preparation. Hence, you could say that
knowledge equivalent to these courses is a prerequisite (successful
completion of the General Microsoft Axapta Application Test is satisfactory
evidence of this).

Introduction to X++ Advanced IV

BEFORE YOU START THE CLASS:

Pre course

Before the course, you need to:

· Thoroughly familiarize yourself with the training material. Read the
material and appendices, paying particular attention to the guidelines
to instructors.

· Inform participants what to bring (see Equipment below for more
information).

Equipment required

· One flipchart with white board markers

· Whiteboard and whiteboard markers

· It is also a good idea to bring some small rewards (for example, small
items from Navision Web Shop, marketing posters, pens etc) as
incentives for participants

· A projector for the instructor to utilize and provide demos in Axapta,
when necessary.

Note

For information regarding course schedule, target audience, related
certification, and so on, please consult the Axapta Training Guide V3.0 -
available on the e-Academy site on Base Camp.

Introduction to X++ Advanced V

BEGINNING THE COURSE

Use the Xpo file: AX30Adv supplied with the training materials for this
course. Some solutions to smaller exercises are inserted directly in the
appendix.

The Xpo file contains exercise solutions. Each grouped under the name of
the lesson, the uniq number within the doc ID(refer to the first page of each
lesson), the version number and in some cases also the exercise number.
Example ax30_47_ReportDesign (where ax30 means Axapta version 3.0
Adv stands for X++ Advanced, 47 is the unique number from the doc ID
and Report Design is the name of the lesson).

The solutions in this xpo file are suggested ways of approaching the
exercises.

The training development team at the Vedbæk campus is always interested
in hearing your comments and feedback. Also, if you make changes or
additions to the xpo file, or any of the material, we would like you to share it
with us and your colleagues in NTRs. Please send your feedback or input
for this course to: Pernille Halberg at phalberg@microsoft.com.

Development Tools I

DocID: AX-300-APP-023-v01.00-ENUS

Appendix B.

Development Tools

This appendix contains:

· Notes and guidelines to instructors

· Solutions to exercises

Development Tools II

DEVELOPMENT TOOLS

Time Topic What to do/say Medium

 Introduction Introduce lesson objectives

 Tutorials Show a tutorial, get a class dialog

What is the purpose of these tutorials? name an example
where they would come in handy

Axapta

dialog

 Review Any problems encountered? dialog

Development Tools III

EXERCISE SOLUTIONS

Use the Xpo file: AX30Adv supplied with the training materials for this
appendix. Some solutions to smaller exercises are inserted directly in the
appendix

Exercise 1 MorphXplorer

Development Tools IV

Exercise 2 Debugger

No solution needed

Exercise 3 System Trace

No solution needed (remember to Select Method trace under tools,
options, development, trace.)

Exercise 4 Find compare

No solution needed

Exercise 5 Table browser

The changed method

void new()
{
;
//rem changed line
}

Exercise 6 Table definition

No solution needed.

Classes I

DocID: AX-300-APP-019-v01.00-ENUS

Appendix C.

Classes

This appendix contains:

· Notes and guidelines to instructors

· Solutions to exercises

Classes II

INSTRUCTOR NOTES

Time Topic What to do/say Medium

 Introduction Introduce lesson objectives

 Comprehension/
Visualization

Question to start with

Have you ever heard the expressions…

 Exercise 1 Create a new class (5 min) the participants can try out the
new class wizard either here or in a later exercise

 Review Any problems encountered? dialog

Classes III

EXERCISE SOLUTIONS

Use the Xpo file: AX30Adv supplied with the training materials for this
appendix. Some solutions to smaller exercises are inserted directly in the
appendix.

Exercise 7 Creating a class

classDeclaration body003A

public class TestClass1

{

}

NOTE: A class name can't be changed by changing the properties

Exercise 8 Creating an object

NOTE: the serves New() should be created by overwriting the default
New() behavior.

public class TestClass1

{

 str myText;

}

void Outvar()

{

 ;

 print myText;

}

void new(str _text= 'Empty')

{

 ;

 myText = _text;

}

Classes 21-2

static void Exercise2(Args _args)

{

 TestClass1 testClass1 = new TestClass1('Hello

World');

 TestClass1 testClass2 = new TestClass1();

 ;

 testClass1.Outvar();

 testClass2.Outvar();

 pause;

}

Exercise 9 Modifying Outvar()

static void Exercise_ModOutvar(Args _args)

{

 TestClass1 testClass1 = new TestClass1();

 ;

 testClass1.Outvar();

 testClass1.Outvar('Hello World');

 testClass1.Outvar();

 pause;

}

void Outvar(str _text = myText)

{

 ;

 myText= _text;

 print myText;

}

Exercise 10 Creating the class method Main()

Classes 21-3

Exercise 11 Create a job that execute Main()

Exercise 12 Calculators (Optional)

static void Exercise4(Args _args)

{

 Calculator calculator = new Calculator(9,3);

 ;

 print calculator.plus();

 print calculator.minus();

 print calculator.multiply();

 print calculator.divide();

 pause;

}

public class Calculator

{

 real a,b;

}

void new(real _a = 0, real _b = 0)

{

 ;

 a =_a;

 b =_b;

}

real plus()

{

 ;

 return a + b;

}

real multiply()

{

 ;

 return a * b;

}

Classes 21-4

real divide()

{

 ;

 return a / b;

}

real minus()

{

 ;

 return a - b;

}

DocID: AX-300-APP-065-v01.00-ENUS

Appendix D.

Data Return

This appendix contains:

· Notes and guidelines to instructors

· Solutions to exercises

Data Return II

INSTRUCTOR NOTES

Time Topic What to do/say Medium

 Introduction Introduce lesson objectives

 Exercises Note that there have been created two sets of solutions for
the stopwatch exercises, if you find one of them better than
the other please notify HQ and we will correct it so that only
one solution exist in the xpo file.

 Review Any problems encountered? dialog

Data Return III

EXERCISE SOLUTIONS

Use the Xpo file: AX30Adv supplied with the training materials for this
appendix. Some solutions to smaller exercises are inserted directly in the
appendix.

Exercise 13 Calculator

Exercise 14 Using WinAPI::GetTickCount

Exercise 15 Return a database buffer

Exercise 16 Create a stopwatch

Exercise 17 Modifying the stopwatch start method (optional)

Inheritance I

DocID: AX-100-APP-001-v01.00-ENUS

Appendix E.

Inheritance

This appendix contains:

· Notes and guidelines to instructors

· Solutions to exercises

Inheritance II

EXERCISE SOLUTIONS

Use the Xpo file: AX30Adv supplied with the training materials for this
appendix. Some solutions to smaller exercises are inserted directly in the
appendix.

Exercise 18 Create two classes and let one inherit from the other.

Inheritance II

The Code

abstract class Vehicle

{

 str VehicleName;

}

abstract void aditionalInformation()

{ }

protected void new()

{ }

Public str toString()

{

 return VehicleName;

}

Static Vehicle construct(VehicleType _type)

{

 switch (_type)

 {

 case VehicleType::Car : return new

Car();

 case VehicleType::Bike : return new

Bike();

 case VehicleType::AIrplane : return new

Airplane();

 default :

debug::assert(true); return null;

 }

}

Vehicle

protected void setName(str _name)

{

 VehicleName = _name;

}

airplane public class Airplane extends Vehicle

{ }

Inheritance III

void aditionalInformation()

{

 print "An airplane can fly";

}

void new()

{

 super();

 this.setName("Airplane");}

Car & Bike Are similar to the Airplane class

Exercise 19 Inherit from the Stopwatch class

Use the stopwatch example from the Data Return lesson and create a new
class that inherits from your “StopWatch” class. Override the method that
returns the time elapsed, so it returns the time elapsed in seconds.

Polymorphism I

DocID: AX-300-APP-020-v01.00-ENUS

Appendix F.

Polymorphism

This appendix contains:

· Notes and guidelines to instructors

· Solutions to exercises

Polymorphism II

EXERCISE SOLUTIONS

Use the Xpo file: AX30Adv supplied with the training materials for this
appendix. Some solutions to smaller exercises are inserted directly in the
appendix.

Exercise 20 Using Polymorphism

Exercise 21 Using Polymorphism (Optional)

Maps I

DocID: AX-300-APP-021-v01.00-ENUS

Appendix G.

Maps

This appendix contains:

· Notes and guidelines to instructors

· Solutions to exercises

Maps II

EXERCISE SOLUTIONS

Use the Xpo file: AX30Adv supplied with the training materials for this
appendix. Some solutions to smaller exercises are inserted directly in the
appendix.

Exercise 22 Creating a map

Maps II

Exercise 23 Using a map

void clicked()

{

 Table1 _table1;

 ;

 _table1.Map1::maptest();

 element.dataSource().reread();

 element.dataSource().refresh();

}

void maptest()

{

 Map1 _map= this.orig();

 ;

 ttsbegin;

 while select forupdate _map

 where _map.Text1 != _map.Text2

 {

 _map.Text1 = _map.Text2;

 _map.update();

 }

 ttscommit;

}

Information Exchange I

AX-300-APP-033-v01.00-ENUS

Appendix H.

Information Exchange

This appendix contains:

· Notes and guidelines to instructors

· Solutions to exercises

Information Exchange II

INSTRUCTOR NOTES

Time Topic What to do/say Medium

 Introduction Introduce lesson objectives

 Comprehension/
Visualization

Question to start with

Have you ever heard the expressions…

 Exercise 1

 Exercise 2…

 Review Any problems encountered? dialog

Information Exchange III

EXERCISE SOLUTIONS

Use the Xpo file: AX30Adv supplied with the training materials for this
appendix. Some solutions to smaller exercises are inserted directly in the
appendix.

Exercise 24 Opening a form

Exercise 25 Opening a form from another form

Exercise 26 Opening a form from a job

Exercise 27 Closing Form1 from Form2 (Optional Exercise)

Data in Forms I

AX-300-APP-034-v01.00-ENUS

Appendix I.

Data in Forms

This appendix contains:

· Notes and guidelines to instructors

· Solutions to exercises

Data in Forms II

INSTRUCTOR NOTE

The xpo file for this lesson includes the built objects for the examples. This
is a brief summary of the example form used in this lesson.

Using a query on a form

You can view the Init() method on SampleCustForm supplied for this
lesson.

Data loading

The example for using the ExecuteQuery() method can be see on the
button titled Example2 on the SampleCustForm.

Examples of the use of the First(), Last(), Next() and Prev() and be see
from the overridden clicked methods of the menu buttons added to the
sample form. An example of using the Filter() and FindRecord() methods
can also be found on the list of menu buttons on this form.

Data manipulation

A button has been added to the Data Manipulation menu button to show
and example of calling the create() method.

The InitValue() method on the SampleCustForm has been extended to
show an example of using this method.

An example of calling the delete() method has been made on the menu
button titled “Delete Record”. Also to highlight the use of the
validateDelete() method this method has been overridden on the data
source.

Data in Forms III

EXERCISE SOLUTIONS

Use the Xpo file: AX30Adv supplied with the training materials for this
appendix. Some solutions to smaller exercises are inserted directly in the
appendix.

Exercise 28 Finding a good example

Most good programmers know to learn from what is already written. In
Axapta 3.0 there are approx. 1800 forms from which you can learn. This
exercise was about looking at some code that is already written to suit a
purpose and learn from that.

1. Right-click on the Forms node of the AOT and select Find from the
shortcut menu.

2. When the Find dialog box opens enter the text QueryBuildRange” in the
Containing Text field.

3. Click the FIND NOW button to start the search.

4. This will return a big list of forms where the string QueryBuildRange has
been used. A good example is the CustTrans form. It uses the
QueryBuildRange as a variable called CriteriaOpen in the Init method on
the data source.

Data in Forms IV

Exercise 29 Ranges on CustGroup

· Locate the Forms node in the AOT.

· Right-click on the Forms Node and select New Form.

· The new form will be created, for example, Form1. You will have to
rename this. Press F2 or right-click on the form and select rename.
Call the form CustGroupFilter

· The next step is to create the data source for the form. The easiest
way to do this is to open another copy of the AOT. Locate the tables
node under Data Dictionary. Find CustTable. When you have found
this drag this table to the data sources node of the form.

· The next step is to create a simple design for the form to display the
data.

· Expand the Designs node of the form. On the Design node right-click
and select New Control. From the menu of controls that are displayed
select Grid

· Once you have a Grid control it is just a matter of adding the fields to
the Grid. To do this you will have to drop controls from the CustTable
data source.

· Right-click on the Data sources node on the Form. Select Open New
Window. This will allow you to drag the fields the second windows to
your Grid. Expand the nodes of this new windows to find the fields.

· Drag and drop these fields AccountNum, Name, CustGroup.

· The design node should look like this.

Data in Forms V

· The form is now built. We have to add some code to use the
QueryBuildRange to filter the data.

· Expand the Data Sources node of the form. Expand the CustTable
data source until you find the Methods node.

· Right-click on the Method node and select Override Method. Then
select the Init method

· Enter the following code in the Init method.

public void init()

{
 QueryBuildRange queryBuildRange;
 ;

 super();

 queryBuildRange =
this.query().dataSourceNo(1).addRange(fieldnum(CustTabl
e,CustGroup));

 queryBuildRange.value("40");
}

· Close and save your form and make sure the form has compiled OK.

Data in Forms VI

· Run the form.

Exercise 30 Ranges on CustGroup (Continued)

This solution is based on the prior exercise having been completed.

· Locate the Design node of the form. Right-click and select New
Control. Select the StringEdit control. There are neater ways to design
a form but this will do for this example.

· While you are there create a button that you can use to refresh the
data. Right-click on the Design and select new Control. Select the
button control.

· The string edit control will be called StringEdit. It is best to change this.
Right-click on this control and select properties.

· Change the name property. Change the name property to GroupFilter.
Also change the AutoDeclaration property to Yes to make it easier to
reference this control.

· Expand the Button control to locate methods. Right-click on the
methods node and select Override Method. Select the Clicked method.

· By overriding this method the X++ editor will be displayed. Enter the
following code in the editor.

void clicked()
{

 Query currentQuery;
 QueryBuildRange queryBuildRange;
 ;

 super();

 currentQuery = CustTable_ds.query();
 queryBuildRange =
currentQuery.dataSourceNo(1).range(1);

 queryBuildRange.value(GroupFilter.text());
 CustTable_ds.executeQuery(); }

Data in Forms VII

· You see the use of GroupFilter.text() this is using the text() method on
the new control we created to return the value to the code. Because we
have used the AutoDeclaration property we can call this control
directly in our form.

· Compile and Save the form. Run it and try the code out. You see in this
example that 10 has been entered in the control and when the button is
clicked the code filters the form.

Exercise 31 Automatic updating

You can use the SetTimeOut() on a method on the form. For example
Created a new method call it setRunUpdate from the methods node of the
form. You can use the same code as you created in the last exercise from
the clicked method on the button. Then you can use this line of code, for
example, from the OnRun method on the form.

 element.setTimeOut("setRunUpdate",1000,False;

This will run the update code 10 seconds after the form starts.

Windows in Forms I

AX-300-APP-035-v01.00-ENUS

Appendix J.

Windows in Forms

This appendix contains:

· Notes and guidelines to instructors

· Solutions to exercises

Windows in Forms II

INSTRUCTOR NOTES

The XPO file for this lesson includes the built objects for the examples. This
is a brief summary of the example form used in this lesson.

Properties

An image has been provided with the material but you can select your own.
In the XPO for this exercise the project has a form called
WindowControlForm which you can use to display the image or simply
build a new form from the AOT as and example to the class as follows :

· Right-click on the Forms node in the AOT.

· Select New Form

· When the form is created expand the form to the Design.

·

· Right-click and select New Control

· The select Window.

· Once the control is created you can right-click on it to view the
properties. Then you can alter the ImageName property.

· Save and run the form.

Windows in Forms III

To use the DataSource and DataField properties you will need a table.
One is provided in the XPO for this manual or create one yourself. You can
use the extended data type of filename. To create a table to use the
properties :

· Right-click on the table node of the AOT.

· Select New Table.

· Position two AOT windows side by side so that you can locate the
FileName extended data type

Once this is done you can either use the Table Browser by right-clicking the
new table. Select Add-ins then Table Browser. Press CTRL+N to create a
new record and type in the path to the image you want to display.
Alternatively build a form and enter the data from a new form.

To show the use of the DataMethod property a display method has been
created on the WindowsControlImage sample table. The code looks as
follows.

display Filename displayImage()

{

 return this.Filename;

}

If you use this property make sure you also set the DataSource property.

Windows in Forms IV

Methods

To make use of methods on the window to example buttons have been add
to the WindowControlForm sample form. Two examples are provided on to
highlight the different ways to access the methods on the control depending
on the use of the AutoDeclaration property on the control.

With AutoDeclaration = Yes.

void clicked()

{
 super();
 ImageWindow.imageName("C:\\temp\\Images\\img10-
paraglider.jpg");
 ImageWindow.updateWindow();
}

With AutoDeclaration = No (default).

void clicked()
{

 FormWindowControl imageDisplay;
 ;
 super();

 imageDisplay =
element.design().control(control::imageWindow);

 imageDisplay.imageName("C:\\temp\\Images\\img10-
paraglider.jpg");
 imageDisplay.updateWindow();

}

Windows in Forms V

Database stored images

On the sample form WindowControlFrom three buttons have been added
along with a method on the form. This relies on a container field existing in
the underlying table. A good example of using this is the standard
CompanyLogo form.

The first button titled “Store Image” uses this code on the overridden
clicked method.

void clicked()
{
 str filename;

 FileNameFilter filter = ['All files','*.*'];
 Bindata binData = new BinData();
 super();

 filename =
Winapi::getOpenFileName(element.hWnd(),filter,'',
"Select Image to Display", '','');

 if (filename)
 {
 if (binData.loadFile(filename))

 {
 WindowsControlImage.displayImage =
binData.getData();

 }
 element.displayImage();
 }

}

The second button “Load Image from Table” calls a new method on the
form to display the image from the table field.

void clicked()

{
 super();
 //Make a call to the method to display the image.
This is on the form.
 element.displayImage();
}

The third button “Remove Image” clears the data from the field.

void clicked()
{

 super();

Windows in Forms VI

 windowscontrolimage.displayImage = ConNull();
 windowscontrolimage.update();

 element.displayImage();
}

The code from the method to retrieve the image from the field and display it
makes use if the Image system class.

void displayImage()
{
 Image logoImage;

 ;

 //This relies on the imageWindow control being set
to AutoDeclaration.
 //windowsControlImage is the table of the
datasource.

 //displayimage is the field on the table.

 try

 {
 element.lock();
 if (windowsControlImage.displayimage)

 {
 logoImage = new Image();

logoImage.setData(windowsControlImage.displayimage);
 imageWindow.image(logoImage);
 imageWindow.widthValue(logoimage.width());

imageWindow.heightValue(logoimage.height());
 }

 else
 {
 imageWindow.imageResource(0);

 imageWindow.widthValue(32);
 imageWindow.heightValue(32);
 }

 element.resetSize();
 element.unLock();

 }
 catch (EXCEPTION::Warning)

 {
 error(StrFmt("@SYS19312",
windowsControlImage.displayimage));

 }
}

Windows in Forms VII

EXERCISE SOLUTIONS

Use the Xpo file: AX30Adv supplied with the training materials for this
appendix. Some solutions to smaller exercises are inserted directly in the
appendix.

Exercise 32 Using properties

· Create a new table from the AOT node.

· Rename the table by pressing F2 or right-click and select rename. Call
the table WindowsImages

· Locate the field node. Right-click the field node and create a new
string. Call this field ImageID

· Create a new string field. Call this field ImageName.

· Change the StringSize property of the ImageName field to a length
that will accept a path name and long file name.

· Now Create a new form from the forms node of the AOT. Call the form
WindowsImages

· Add the new table as the data source for this form.

· The next step is to add a new control to the design of the form. Expand
the Designs node and right-click on the Design node. Select New
Control and select the Window control.

· Drag the ImageID and the ImageName fields from the Data source
onto the design.

· Right-click on the Window control and change the DataSource
property to the data source WindowsImages. Also change the
DataField property to ImageName.

· Save the form and run it by right-clicking on the form name and
selecting open.

· Enter some data in the fields with a path and name to a valid image.

Windows in Forms VIII

Exercise 33 Using methods

NOTE : This solution relies on exercise the exercise Using Properties being
completed.

· Create a new method on the data source of the form. To do this find
the Data sources node. Expand the WindowsImages node.

· From the methods node right-click and select New Method.

· Call the method returnFileName and add the following code

display FileName returnFileName()

{

 return WindowsImages.ImageName;

}

· Note the method has to be a display method and return the FileName
data type.

· Find the Window control on the design.

· Right-click on this and find the properties. Change the DataSource
property to the data source WindowsImages and the DataMethod to
the new method returnFileName.

· Save and run the form.

Windows in Forms IX

Exercise 34 Selecting a file

NOTE : This solution relies on exercise Using Properties being completed.

· Locate the Design node on the form WindowsImages.

· Add a new button to the form.

· Expand the nodes of the button.

· Right-click on the Method node and select Override Method. Select the
Clicked method. Here we can write some code on the method to use
the Windows API calls in Axapta WinAPI.

· Add the following code to the method when the editor is displayed or
double-click on the method to edit it.

void clicked()
{
 str filename;

 FileNameFilter filter = ['All files','*.*'];
 ;
 super();

 filename =
Winapi::getOpenFileName(element.hWnd(),filter,'',
"Select Image to Display", '','');

 if (filename)
 {
 WindowsImages.ImageName = filename;

 }

}

· Save and compile the form then run it. Click the new button and select
a file.

Exercise 35 Using a stored image

Windows in Forms X

NOTE : This solution relies on the prior exercise being completed.

· Add a new field to the table of type container.

· Call the field ImageData.

· There is a small issue with changing the underlying table that a form is
based on as the new field won’t be picked up in the data sources
assigned to the form. To get around this issue, save the form. Then
right-click and select the restore option. The new file will be available in
the data source.

· You will have to change some properties of the Window control to
make it easier to code again. Right-click on the Window control and
change the properties. Name to WindowImage and Auto Declaration to
es.

· So that you have two examples of the code right-click on the button
created in exercise 3. Select the duplicate option. You will now have
two buttons on the form and the code on the clicked method will have
been copied as well.

· Change the code on the new button to retrieve the binary data from the
selected image and use the Image class to load it into the control.

void clicked()
{

 str filename;
 FileNameFilter filter = ['All files','*.*'];
 Bindata binData = new BinData();

 Image logoImage;
 ;
 super();

 filename =
Winapi::getOpenFileName(element.hWnd(),filter,'',
"Select Image to Display", '','');

 if (filename)
 {
 if (binData.loadFile(filename))

 {
 WindowsImages.ImageData =
binData.getData();

 }

Windows in Forms XI

 element.lock();
 logoImage = new Image();

 logoImage.setData(WindowsImages.ImageData);
 windowImage.image(logoImage);
 windowImage.widthValue(logoimage.width());

 windowImage.heightValue(logoimage.height());
 element.resetSize();
 element.unLock();

 }

}

· The additional code needed to display the image would be best on a
separate form method as that it could be called from different places on
the form but it is all place together for ease of the exercise.

Lookup Forms I

AX-300-APP-036-v01.00-ENUS

Appendix K.

Lookup Forms

This appendix contains:

· Notes and guidelines to instructors

· Solutions to exercises

Lookup Forms II

INSTRUCTOR NOTES

Lookup Forms III

EXERCISE SOLUTIONS

Use the Xpo file: AX30Adv supplied with the training materials for this
appendix. Some solutions to smaller exercises are inserted directly in the
appendix. This is a brief summary of the example form used in this lesson.

Exercise 36 New table with lookup form

· Create a new table called Technicians.

· Expand the table to add new fields. Add an integer called ID, and two
strings called FirstName and LastName. Save the table.

· Locate the CustTable. Expand the fields node and right-click and
create a new field. Call this field TechnicianID. Save the table.

· Create a new form from the Forms node of the AOT.

· Call the form Technicians.

· Create a Design for the form of a simple Grid. Add the three field from
the Table ID, FirstName and LastName.

· Locate the CustTable form in the AOT. Modify the design to add the
new field TechnicianID to the Overview tab grid.

· Expand this new control to find the methods nodes. Right-click and
select Override Method. Select the Lookup method.

· Add some code to the method to perform the look up. This code uses
the FormRun class which is needed to be passed to a method called
performFormLookup.

public void lookup()

{

 FormRun newPopup;

 Args argForm = new Args()

 ;

 argForm.name(formstr(Technicians));

Lookup Forms IV

 argForm.caller(this);

 newPopup = ClassFactory.formRunClass(argForm);

 newPopup.init();

 this.performFormLookup(newPopup);

}

· Now this will pop up the new lookup by using the performFormLookup
method on the control. The next step is to modify the called form to be
able to return a value.

· Override the run method on the Technicians form. Add the following
line of code to return the value. You still need to call super() as you still
want the form to run.

public void run()

{

 super();

element.selectMode(element.control(control::Technicians

_ID));

}

· Save you objects then try them out. You will have to enter some data in
the Technicians table but you can do this from the form.

Exercise 37 Filtering data

NOTE : This exercise builds on the prior exercise.

· Add the new field to the Technicians table. Base it on the
CustGroupId extended data type.

· Extend the code added for the lookup form in the prior exercise. This
passes the Customer Group from the CustTable You will just need to
add one line, for example:

Lookup Forms V

 …..

 argForm.caller(this);

 argForm.parm(CustTable.CustGroup);

 newPopup = ClassFactory.formRunClass(argForm);

 …..

· Locate the Technicians form. Expand the Data source node to find the
methods node. Right-click and select Override Method, select the Init
method. Add the following code to method. This makes use of the args
class pass to the form from the calling form to filter the popup form for
the CustGroupId.

public void init()

{

 QueryBuildRange queryBuildRange;

 ;

 super();

 queryBuildRange =

this.query().dataSourceNo(1).addRange(fieldnum(Technici

ans,CustGroupId));

 queryBuildRange.value(element.args().parm());

}

· The trick here is the use of the Args class calling the parm method to
retrieve the data sent from the calling form.

· Add you own error check to the code.

List Views I

DocID: AX-300-APP-024-v01.00-ENUS

Appendix L.

List Views

This appendix contains:

· Notes and guidelines to instructors

· Solutions to exercises

List Views II

INSTRUCTOR NOTES

A good example of the usage of list controls are the tutorial forms
Tutorial_Form_ListControl and Tutorial_Form_ListControl_CheckBox.
To see and example of creating a menu you can view the form
Tutorial_PopupMenu.

Time Topic What to do/say Medium

 Introduction Introduce lesson objectives

 Comprehension/
Visualization

Question to start with

Have you ever heard the expressions…

 Exercise 1

 Exercise 2

 Exercise 3

 Review Any problems encountered? dialog

List Views III

EXERCISE SOLUTIONS

Use the Xpo file: AX30Adv supplied with the training materials for this
appendix. Some solutions to smaller exercises are inserted directly in the
appendix. This is a brief summary of the example form used in this lesson.

Exercise 38 Creating a List View

· Create a new form from the AOT. Call the form ListExample.

· Locate the Designs node of the form. Expand the Design.

· Right-click on the Design node and select New Control. Select
ListView.

· Axapta will set the AutoDeclaration property of this control to yes so
that you can code against it.

· The next step is to create some code to load up the data.

· Locate the Form methods. Right-click and select override method.
Select the Run method.

· Add the following code to Run method.

public void run()

{

 CustTable _custTable;

 ;

 super();

 while select * from _custtable

 {

 ListView.add(_custtable.Name);

 }

 ListView.viewType(1);

List Views IV

}

· This is very simple code to loop through the CustTable to select the
data and add to the ListView control.

· The call to the viewType() method displays the format of the list.

Exercise 39 Dragging and dropping between List Views

NOTE : This solution assumes that you have completed the prior exercise.

· Create a new form from the AOT. Call the form ListExample.

· Locate the Designs node of the form. Expand the Design.

· Right-click on the Design node and select New Control. Select
ListView.

· Axapta will set the AutoDeclaration property of this control to yes so
that you can code against it.

· Add a second new Control. Select ListView. This new list will be called
ListView1

· There are some variables that will be used latter in the form which
should be added to the form classDeclaration.

public class FormRun extends ObjectRun

{

 FormListControl _list;

 FormListControl _list2;

}

· The next step is to create some code to load up the data.

· Locate the Form methods. Right-click and select override method.

List Views V

Select the Run method.

· Add the following code to Run method.

public void run()

{

 _list = element.control(control::listview);

 _list2 = element.control(control::listview1);

 this.fillList();

 _list.viewType(1);

 _list2.viewType(1);

}

· This code relies on some new methods being created on the form
fillList(), insertListItem_1(), insertListItem_2().

· The code for fillList() should look like this. This method is used to load
up the data to the first list.

void fillList()

{

 CustTable _custTable;

 int i = 0;

 ;

 while select * from _custtable

 order by accountNum

 {

 element.insertListItem_1(_custtable.Name,i);

 i++;

 }

}

· The code for insertListItem_1() should look list this. This method is
used add items to the first list control.

List Views VI

int insertListItem_1(Str s, int i)

{

 int idx;

 FormListItem item;

 item = new FormListItem(s,i);

 item.idx(i);

 idx = _list.addItem(item);

 return idx;

}

· The code for insertListItem_2() should look list this. This method is
used add items to the first list control.

int insertListItem_2(Str s, int i)

{

 int idx;

 FormListItem item;

 item = new FormListItem(s,i);

 item.idx(i);

 idx = _list2.addItem(item);

 return idx;

}

· The code to handle the drag-and-drop will be place in the overridded
method drop() of each list control. To do this locate the methods node
under the ListView control.

· Right-click on methods node and select Override Method. Select the
Drop() method.

List Views VII

· Edit the code to enter this code. This code is using the input
parameters of the dragSource control and finding the selected item. It
then inserts the item to the list and deletes the item from the source
list.

void drop(FormControl dragSource, FormDrag dragMode,

int x, int y)

{

 FormListControl _sourcelist;

 int idx;

 ;

 _sourcelist = dragSource;

 idx =

_sourcelist.getNextItem(FormListNEXT::SELECTED);

element.insertListItem_1(_sourcelist.getItem(idx).text(

),idx);

 _sourcelist.delete(idx);

}

· There is a property on a ListView called SingleSelection which
determines if the user is allowed to select more that one item from the
list. The code above will only add the first item. You can add a loop to
handle list.

Exercise 40 Menu

NOTE : This solution assumes that you have completed the prior exercise.

· On the second ListView control override the method context. Add the
following code to add the menu.

List Views VIII

public void context()

{

 int i, selectedMenu;

 FormStaticTextControl text;

 PopupMenu _listmenu = new

PopupMenu(element.hWnd());

 int _listdelete =

_listmenu.insertItem('Delete Item');

 int _listdeleteAll =

_listmenu.insertItem('Delete All');

 ;

 selectedMenu = _listmenu.draw();

 switch (selectedMenu)

 {

 case -1:

 break;

 case _listdelete:

_list2.delete(_list2.getNextItem(FormListNEXT::SELECTED

));

 break;

 case _listdeleteAll:

 _list2.deleteAll();

 break;

 }

}

·

Tree Structure

DocID: AX-300-APP-025-v01.00-ENUS

Appendix M.

Tree Structure

This appendix contains:

· Notes and guidelines to instructors

· Solutions to exercises

Tree Structure II

INSTRUCTOR NOTES

Time Topic What to do/say Medium

 Introduction Introduce lesson objectives

 Comprehension/
Visualization

Question to start with

Have you ever heard the expressions…

 Exercise 1

 Exercise 2

 Exercise 3

 Review Any problems encountered? Dialog

Tree Structure III

EXERCISE SOLUTIONS

Use the Xpo file: AX30Adv supplied with the training materials for this
appendix. Some solutions to smaller exercises are inserted directly in the
appendix.

Exercise 41 Creating a form with a tree structure

Exercise 42 Expanding the tree structure

Exercise 43 Fields

Temporary Tables I

DocID: AX-300-APP-026-v01.00-ENUS

Appendix N.

Temporary Tables

This appendix contains:

· Notes and guidelines to instructors

· Solutions to exercises

Temporary Tables II

TEMPORARY TABLES

Time Topic What to do/say Medium

5 Introduction Introduce lesson objectives PPT

10 Comprehension/
Visualization

Temp tables

Purpose

Use

Temp. tables and Views, do the view still exist when the
temp tables is closed?

Dialog

Axapta

5 Questions Q: Where are temporary tables created?

A: Temporary tables are created as files in the local file
system.

Q: Does it have any impact where you declare your
table? (server& client)

A: it does not matter where, on the server or on the client,
a temporary table is declared. Even when you write code
like server static <tmptable>::createTable()
that instantiates a table, the table still becomes a client
temporary table if the first record is inserted from client
code.

If a temporary table has a new dataset (setTmpData), the
temporary table will afterwards be with the temporary
table that provided its data. (ref. Dev Guide)

dialog

20-40 Exercises 4 + 1 optional Axapta

 Review Any problems encountered? dialog

Temporary Tables III

EXERCISE SOLUTIONS

Use the Xpo file: AX30Adv supplied with the training materials for this
appendix. Some solutions to smaller exercises are inserted directly in the
appendix.

Exercise 44 Temporary table in a job

Exercise 45 Temporary table in a class

Exercise 46 Temporary table in a form

Exercise 47 Temporary table in a report

Exercise 48 Temporary table for spool file administration - Optional

Validation Techniques I

DocID: AX-300-APP-027-v01.00-ENUS

Appendix O.

Validation Techniques

This appendix contains:

· Notes and guidelines to instructors

· Solutions to exercises

Validation Techniques II

INSTRUCTOR NOTES

Time Topic What to do/say Medium

 Introduction Introduce lesson objectives

 Comprehension/
Visualization

Question to start with

Have you ever heard the expressions…

 Exercise 1

 Review Any problems encountered? dialog

Validation Techniques III

EXERCISE SOLUTIONS

Use the Xpo file: AX30Adv supplied with the training materials for this
appendix. Some solutions to smaller exercises are inserted directly in the
appendix.

Exercise 49 Validate on the table BankGroup

public boolean validateField(fieldId _fieldIdToCheck)

{

 boolean ret;

 BankGroup _bankgroup;

 BankGroupId _bankgroupId =

substr(this.BankGroupId,1,1)+"*";

 //First use the standard validation

 ret = super(_fieldIdToCheck);

 //Second make your additional validation

 if (ret==true)

 {

 switch (_fieldIdToCheck)

 {

 //performance issue: only query when the

BankGroupId is changed

 case fieldnum(BankGroup,BankGroupId):

 select firstonly _bankgroup

 where _bankgroup.BankGroupId like

_bankgroupId

 && _bankgroup.RecId != this.RecId;

 if (_bankgroup)

 {

 info("First letter already used");

 ret = false;

 }

 }

 }

 return ret;

}

Queries I

DocID: AX-300-APP-028-v01.00-ENUS

Appendix P.

Queries

This appendix contains:

· Notes and guidelines to instructors

· Solutions to exercises

Queries II

INSTRUCTOR NOTES

Time Topic What to do/say Medium

 Introduction Introduce lesson objectives

 Comprehension/
Visualization

 Demo Show the new Query dialog Axapta

Dialog

 Exercise 1

 Exercise 2

 Exercise 3

 Review Any problems encountered? dialog

Queries III

EXERCISE SOLUTIONS

Use the Xpo file: AX30Adv supplied with the training materials for this
appendix. Some solutions to smaller exercises are inserted directly in the
appendix.

Exercise 50 Running an AOT query

The code

static void Exercise1(Args _args)

{

 QueryRun _queryExercise = new

QueryRun(queryStr(QueryExercise));

 CustTable _custTable;

 CustTrans _custTrans;

 AmountMST _amountMST=0;

 Name _name="";

 ;

 if (_queryExercise.prompt())

 {

 //the query is sorted by Customer.

Queries IV

 while (_queryExercise.next())

 {

 _custTable =

_queryExercise.get(tablenum(CustTable));

 _custTrans = _queryExercise.

get(tablenum(CustTrans));

 if (_name != _custTable.Name)

 {

 print _custTable.Name+" "+

num2str(_amountMST,10,2,2,1);

 //start calculating for the next

customer.

 _name = _custTable.Name;

 _amountMST = 0;

 }

 //increase the total amount of sales orders

 _amountMST += _custTrans.AmountMST;

 }

 }

 pause;

}

Exercise 51 Building a query

static void Exercise2(Args _args)

{

 CustTable _custTable;

 Query q = new Query();

 QueryBuildDataSource qbd;

 QueryRun _queryExercise;

 ;

 qbd = q.addDataSource(TableNum(CustTable));

 qbd.addSortField(FieldNum(CustTable,Name));

 //no additional ranges are added

 _queryExercise = new QueryRun(q);

 if (_queryExercise.prompt())

 {

 while (_queryExercise.next())

 {

 _custTable = _queryExercise.getNo(1);

Queries V

 print _custTable.Name;

 }

 }

 pause;

}

Exercise 52 Build a complex query

static void Exercise3(Args _args)

{

 CustTable _custTable;

 CustTrans _custTrans;

 Query q = new Query();

 QueryBuildDataSource qbdCustTable;

 QueryBuildDataSource qbdCustTrans;

 QueryRun _queryExercise;

 Name _name;

 AmountMST _amountMST;

 ;

 //add the first data source.

 qbdCustTable = q.addDataSource(TableNum(CustTable));

 qbdCustTable.addSortField(FieldNum(CustTable,Name));

 //add the second data source.

 qbdCustTrans =

qbdCustTable.addDataSource(TableNum(CustTrans));

 //declare the relation between the two data sources.

 qbdCustTrans.joinMode(JoinMode::InnerJoin);

 qbdCustTrans.addLink(fieldnum(CustTable,AccountNum),

fieldnum(CustTrans,AccountNum));

 _queryExercise = new QueryRun(q);

 if (_queryExercise.prompt())

 {

 //the query is sorted by Customer.

Queries VI

 while (_queryExercise.next())

 {

 _custTable = _queryExercise.getNo(1);

 _custTrans = _queryExercise.getNo(2);

 if (_name != _custTable.Name)

 {

 print _custTable.Name+" "+

num2str(_amountMST,10,2,2,1);

 //start calculating for the next

customer.

 _name = _custTable.Name;

 _amountMST = 0;

 }

 //increase the total amount of sales orders

 _amountMST += _custTrans.AmountMST;

 }

 }

 pause;

}

Using System, X and Dict. Classes I

DocID: AX-300-APP-029-v01.00-ENUS

Appendix Q.

Using System, X and Dict.
Classes

This appendix contains:

· Notes and guidelines to instructors

· Solutions to exercises

Using System, X and Dict. Classes II

INSTRUCTOR NOTES

Time Topic What to do/say Medium

 Introduction Introduce lesson objectives

 Comprehension/
Visualization

Question to start with

Have you ever heard the expressions…

 Exercise 1

 Exercise 2….

 Review Any problems encountered? dialog

Using System, X and Dict. Classes III

EXERCISE SOLUTIONS

Use the Xpo file: AX30Adv supplied with the training materials for this
appendix. Some solutions to smaller exercises are inserted directly in the
appendix.

Exercise 53 Viewing Dict classes

Exercise 54 Testing DictClass

Exercise 55 Testing DictTable

Exercise 56 Modify FormRunClass

Exercise 57 X Classes

Macros I

DocID: AX-300-APP-030-v01.00-ENUS

Appendix R.

Macros

This appendix contains:

· Notes and guidelines to instructors

· Solutions to exercises

Macros II

INSTRUCTOR NOTES

Time Topic What to do/say Medium

 Introduction Introduce lesson objectives

 Comprehension/
Visualization

Question to start with

Have you ever heard the expressions…

 Exercise 1

 Exercise 2….

 Review Any problems encountered? dialog

Macros III

EXERCISE SOLUTIONS

Use the Xpo file: AX30Adv supplied with the training materials for this
appendix. Some solutions to smaller exercises are inserted directly in the
appendix.

Exercise 58 Local macro in a job

Exercise 59 Global macros

Exercise 60 Macro library

Exercise 61 Calculation macro

Reports I

DocID: AX-300-APP-064-v01.00-ENUS

Appendix S.

Reports

This appendix contains:

· Notes and guidelines to instructors

· Solutions to exercises

Reports II

INSTRUCTOR NOTES

Time Topic What to do/say Medium

 Introduction Introduce lesson objectives

 Comprehension/
Visualization

Question to start with

Have you ever heard the expressions…

 Exercise 1

 Exercise 2

 Review Any problems encountered? dialog

Reports III

EXERCISE SOLUTIONS

Use the Xpo file: AX30Adv supplied with the training materials for this
appendix. Some solutions to smaller exercises are inserted directly in the
appendix.

Exercise 62 Display methods

The display method on the table

display str showPhone()

{

 if (this.Phone)

 {

 return this.Phone;

 }

 else

 {

 return this.PhoneLocal;

 }

}

FieldString : Control properties (the text field in the report):

Table: EMPTable
DataMethod: Showphone

Exercise 63 Synchronization

Overwrite the run method of the report generated in exercise 1.

public void run()

{

 EmplTable _emplTable;

Reports IV

 QueryBuildRange _qbr;

 //activate this code only when it is called from the

Employee Form

 if (element.args().dataset()==TableNum(EmplTable))

 {

 _emplTable = element.args().record();

 _qbr = element.query().dataSourceNo(1).

 findRange(FieldNum(EmplTable,EmplId));

 if (!_qbr)

 {

 info("ERROR");

 }

 else

 {

 _qbr.value(_emplTable.EmplId);

 }

 }

 super();

}

Report Design I

DocID: AX-300-APP-031-v01.00-ENUS

Appendix T.

Report Design

This appendix contains:

· Notes and guidelines to instructors

· Solutions to exercises

Report Design II

INSTRUCTOR NOTES

Time Topic What to do/say Medium

 Introduction Introduce lesson objectives

 Comprehension/
Visualization

Question to start with

Have you ever heard the expressions…

 Exercise 1

 Exercise 2

 Review Any problems encountered? dialog

Report Design III

EXERCISE SOLUTIONS

Use the Xpo file: AX30Adv supplied with the training materials for this
appendix. Some solutions to smaller exercises are inserted directly in the
appendix.

Exercise 64 Report with two designs

Exercise 65 Report without data source

Exercise 66 Absence report - Optional

Wizard Wizard I

DocID: AX-300-APP-032-v01.00-ENUS

Appendix U.

Wizard Wizard

This appendix contains:

· Notes and guidelines to instructors

· Solutions to exercises

Wizard Wizard II

INSTRUCTOR NOTES

Wizard Wizard III

EXERCISE SOLUTIONS

Use the Xpo file: AX30Adv supplied with the training materials for this
appendix. Some solutions to smaller exercises are inserted directly in the
appendix.

Exercise 67 New wizard

Exercise 68 Create a wizard

